dielectric permittivity

Influence of uniaxial pressures on dynamic dielectric characteristics of RbHSO4

Within the modified four-sublattice pseudospin model of deformed RbHSO$_{4}$ ferroelectrics, using the Glauber method and in the mean field approximation we calculate the dynamic dielectric permittivity of a mechanically clamped crystal and explore its dependence on uniaxial  pressures in wide temperature and frequency ranges. A satisfactory quantitative agreement with the experimental data is obtained.

Influence of the uniaxial stress $p_2$ and transverse fields $E_1$ and $E_3$ on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials

A modified GPI model that accounts for the piezoelectric coupling between the ordered structural elements and the strains $\varepsilon_j$ has been used for studing of effects arising in GPI ferroelectrics under the action of the uniaxial stress $p_{2}$ and electric fields $E_1$ and $E_3$.  The  polarization vectors and components of static dielectric permittivity are calcucated in the two-particle cluster approximation for mechanically clamped  crystal, and piezoelectric and thermal parameters are also determined.  The influence of the simultaneous action of the stress

Frequency spectrum of surface plasmon-polariton waves: influence of Coulomb correlations

The model that describes the influence of Coulomb interaction between electrons (Coulomb correlations) on a frequency spectrum of plasmon-polariton waves in electroneutral structures dielectric/metal/dielectric is investigated.  It is shown that for atomically thin metal films (ATMF), such correlations affects both the quantum-dimensional behavior of the frequency spectrum as a function of the thickness of the metal film and
significantly improves the correlation of theoretical calculations and experiment.

Influence of uniaxial and hydrostatic pressures and shear stress $\sigma_{5}$ on the phase transition and thermodynamic properties of quasi-one-dimensional ferroelectrics of the CsH$_2$PO$_4$ type

Within the framework of the modified proton ordering model for the quasi-one-dimensional hydrogen bonded ferroelectrics of the CsH$_2$PO$_4$ type with taking into account the linear in the strains  $\varepsilon_1$, $\varepsilon_2$, $\varepsilon_3$, and $\varepsilon_5$ contributions into the energy of the proton subsystem, without tunneling, using the two-particle cluster approximation, we study the influence of uniaxial pressures $p_{i}$, hydrostatic pressure $p_{h}$, and shear stress $\sigma_{5}$ on the phase transition, polarization, transverse dielectric permittivity

Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric-metal-dielectric structures

In this paper, we propose a model that allows us to investigate the influence of quantum size effects and the electroneutrality condition on the spectrum of SPPs waves as a function of metal thickness in heterogeneous dielectric/metal/dielectric structures.  It is shown that for ultrathin metal layers, the spectrum of plasmon waves has oscillatory behavior in the domain of small wave vectors  (k~0.05-0.2 1/nm).  The amplitude of oscillations depends on the conditions of electroneutrality for the dielectric/metal/dielectric structure.