In this paper, a new Blind Source Separation (BSS) method that handles mixtures of noisy independent / dependent sources is introduced. We achieve that by minimizing a criterion that fuses a separating part, based on Kullback–Leibler divergence for either dependent or independent sources, with a regularization part that employs the bilateral total variation (BTV) for the purpose of denoising the observations. The proposed algorithm utilizes a primal-dual algorithm to remove the noise, while a gradient descent method is implemented to retrieve the signal sources. Our algorithm has shown its effectiveness and efficiency and also surpassed the standard existing BSS algorithms.
- Comon P. Independent component analysis, a new concept? Signal Processing. 36 (3), 287–314 (1994).
- Mansour A., Jutten C. A direct solution for blind separation of sources. IEEE Transactions on Signal Processing. 44 (3), 746–748 (1996).
- Taleb A., Jutten C. Entropy optimization. Artificial Neural Networks – ICANN'97. 529–534 (1997).
- Belouchrani A., Abed-Meraim K., Cardoso J.-F., Moulines E. A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing. 45 (2), 434–444 (1997).
- Pesquet J.-C., Moreau E. Cumulant-based independence measures for linear mixtures. IEEE Trans. Inform. Theory. 47 (5), 1947–1956 (2001).
- Cardoso J.-F. Blind signal separation: statistical principles. Proceedings of the IEEE. 86 (10), 2009–2025 (1998).
- Novey M., Adali T. ICA by maximization of nongaussianity using complex functions. 2005 IEEE Workshop on Machine Learning for Signal Processing. 21–26 (2005).
- Pham D. Mutual information approach to blind separation of stationary sources. IEEE Transactions on Information Theory. 48 (7), 1935–1946 (2002).
- Keziou A., Fenniri H., Ould Mohamed M., Delaunay G. Séparations aveugle de sources par minimisation des $\alpha$-divergences. XXIIe colloque GRETSI, Dijon, 8–11 septembre 2009.
- Keziou A., Fenniri H., Ghazdali A., Moreau E. New blind source separation method of independent/dependent sources. Signal Processing. 104, 319–324 (2014).
- Ghazdali A., Hakim A., Laghrib A., Mamouni N., Raghay S. A new method for the extraction of fetal ECG from the dependent abdominal signals using blind source separation and adaptive noise cancellation techniques. Theoretical Biology and Medical Modelling. 12, Article number: 25 (2015).
- Mamouni N., Keziou A., Fenniri H., Ghazdali A., Hakim A. A new convolutive source separation approach for independent/dependent source components. Digital Signal Processing. 100, 102701 (2020).
- Ourdou A., Ghazdali A., Laghrib A., Metrane A. Blind Separation of Instantaneous Mixtures of Independent/Dependent Sources. Circuits, Systems, and Signal Processing. 40, 4428–4451 (2021).
- Ourdou A., Ghazdali A., Metrane A., Hakim M. Digital document image restoration using a blind source separation method based on copulas. In Journal of Physics: Conference Series. 1743, 012034 (2021).
- Belouchrani A., Cichocki A. Robust whitening procedure in blind source separation context. Electronics letters. 36 (24), 2050–2051 (2000).
- Sahmoudi M., Snoussi H., Amin M. G. Robust approach for blind source separation in non-gaussian noise environments. Proceedings of ISCCSP, Marrakesh, Morocco, IEEE/EURASIP (2006).
- El Rhabi M., Fenniri H., Keziou A., Moreau E. A robust algorithm for convolutive blind source separation in presence of noise. Signal Processing. 93 (4), 818–827 (2013).
- Ghazdali A., El Rhabi M., Fenniri H., Hakim A., Keziou A. Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas. Signal Processing. 131, 502–513 (2017).
- Tomasi C., Manduchi R. Bilateral Filtering for Gray and Color Images. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 839–846 (1998).
- Sklar A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris. 8, 229–231 (1959).
- Farsiu S., Robinson D., Elad M., Milanfar P. Fast and Robust Multi-Frame Super-Resolution. IEEE Trans. on Image Processing. 13 (10), 1327–1344 (2003).
- El Mourabit I., El Rhabi M., Hakim A., Laghrib A., Moreau E. A new denoising model for multi-frame super-resolution image reconstruction. Signal Processing. 132, 51–65 (2017).
- Afraites L., Hadri A., Laghrib A. A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. Inverse Problems. 36 (2), 025006 (2019).
- Silverman B. W. Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability, Chapman & Hall, London (1986).
- Gumbel E. J. Bivariate exponential distributions. Journal of the American Statistical Association. 55 (292), 698–707 (1960).
- Morgenstern D. Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungeblatt für mathematische statistik. 8, 234–235 (1956).
- Clayton D. G. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika. 65 (1), 141–151 (1978).
- Cardoso J. F., Souloumiac A. Blind beamforming for non-gaussian signals. IEE Proceedings F (Radar and Signal Processing). 140 (6), 362–370 (1993).
- Hyvärinen A., Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation. 9 (7), 1483–1492 (1997).
- Miller E.-G., Fisher J.-W. III. Independent components analysis by direct entropy minimization, Tech. Rep. UCB/CSD-03-1221, University of California at Berkeley, January 2003.