On the maximal output set of fractional-order discrete-time linear systems

2022;
: pp. 262–277
https://doi.org/10.23939/mmc2022.02.262
Received: September 03, 2021
Revised: November 26, 2021
Accepted: November 27, 2021

Mathematical Modeling and Computing, Vol. 9, No. 2, pp. 262–277 (2022)

1
Laboratory of Analysis, Modeling and Simulation, Hassan II University Casablanca
2
Laboratory of Analysis, Modeling and Simulation, Hassan II University Casablanca
3
Laboratory of Analysis, Modeling and Simulation, Hassan II University Casablanca
4
Laboratory of Analysis, Modeling and Simulation, Hassan II University Casablanca

In this paper, we consider a linear discrete-time fractional-order system defined by \[\Delta ^{\alpha }x_ {k+1}=Ax_k+B u_k, \quad k \geq 0, \quad x_{0} \in \mathbb{R}^{n};\] \[y_{k}=Cx_k, \quad k \geq 0,\] where $A$, $B$ and $C$ are appropriate matrices, $x_{0}$ is the initial state, $\alpha$ is the order of the derivative, $y_k$ is the signal output and $u_k=K x_k$ is feedback control.  By defining the fractional derivative in the Grunwald–Letnikov sense, we investigate the characterization of the maximal output set, $\Gamma(\Omega)=\lbrace x_{0} \in \mathbb{R}^{n}/y_{i} \in \Omega,\forall i \geq 0 \rbrace$, where $\Omega\subset\mathbb{R}^{p}$ is a constraint set; and, by using some hypotheses of stability and observability, we prove that $\Gamma(\Omega)$ can be derived from a finite number of inequations.  A powerful algorithm approach is included to identify the maximal output set; also, some appropriate algorithms and numerical simulations are given to illustrate the theoretical results.

  1. Blanchini F.  Set invariance in control.  Automatica. 35 (11), 1747–1767 (1999).
  2. Liu J., Li H., Liu Y.  A new fully discrete finite difference/element approximation for fractional cable equation.  Journal of Applied Mathematics and Computing. 52, 345–361 (2016).
  3. Podlubny I.  Fractional differential equations.  Vol. 198. Academic Press (1999).
  4. Hilfer R.  Applications of fractional calculus in physics.  World Scientific, Singapore (2000).
  5. Kilbas A. A., Srivastava H. M., Trujillo J. J.  Theory and applications of fractional differential equations.  Elsevier Science (2006).
  6. Magin R. L., Abdullah O., Baleanu D., Zhou X. J.  Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation.  Journal of Magnetic Resonance. 190 (2), 255–270 (2008).
  7. Klages R., Radons G., Sokolov I. M.  Anomalous transport: Foundations and applications.  Wiley–VCH (2008).
  8. Sierociuk D., Dzieliński A.  Fractional Kalman Filter Algorithm for the States, Parameters and Order of Fractional System Estimation.  International Journal of Applied Mathematics and Computer Science. 16 (1), 129–140 (2006).
  9. Kaczorek T.  Reachability and Controllability to Zero of Cone Fractional Discrete-time Systems.  Archives of Control Sciences. 17, 357–367 (2007).
  10. Kaczorek T.  Fractional Positive Continuous-Time Linear Systems and Their Reachability.  International Journal of Applied Mathematics and Computer Science. 18, 223–228 (2008).
  11. Atici F. M., Eloe P. W.  Initial Value Problems in Discrete Fractional Calculus.  Proceedings of the American Mathematical Society. 137, 981–989 (2008).
  12. Lorenzo C. F., Hartley T. T.  On Self-Consistent Operators with Application to Operators of Fractional Order.  ASME 2009 International Design Engineering technical Conferences and Computers and Information in Engineering Conference.  1069–1075 (2009).
  13. Ferreira R. A. C., Torres D. F. M.  Fractional h-Difference Equations Arising from the Calculus of Variations.  Applicable Analysis and Discrete Mathematics. 5 (1), 110–121 (2011).
  14. Bastos N. R. O., Ferreira R. A. C., Torres D. F. M.  Discrete-time Fractional Variational Problems.  Signal Processing. 91 (3), 513–524  (2011).
  15. Caponetto R., Dongola G., Fortuna L., Petras I.  Fractional Order Systems. Modelling and Control Applications.  World Scientific Series on Nonlinear Science Series A: Vol. 72 (2010).
  16. Busłowicz M.  Robust Stability of Positive Discrete time Linear Systems of Fractional Order.  Bulletin of the Polish Academy of Sciences. Technical Sciences. 58 (4), 567–572 (2010).
  17. Gilbert E. G., Tan K. T.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets.  IEEE Transactions on Automatic Control. 36 (9), 1008–1020 (1991).
  18. Kolmanovsky I., Gilbert E. G.  Theory and computation of disturbance invariant sets for discrete-time linear systems.  Mathematical Problems in Egineering. 4, 317–367 (1998).
  19. Rachik M., Lhous M.  An observer-based control of linear systems with uncertain parameters.  Archives of Control Sciences. 26 (4), 565–576 (2016).
  20. Zakary O., Rachik M., Tridane A., Abdelhak A.  Identifying the set of all admissible disturbances: discrete-time systems with perturbed gain matrix.  Mathematical Modeling and Computing. 7 (2), 293–309 (2020).
  21. Ben Rhila S., Lhous M., Rachik M.  On the asymptotic output sensitivity problem for a discrete linear systems with an uncertain initial state.  Mathematical Modeling and Computing. 8 (1), 22–34 (2021).
  22. Kolmanovsky I., Gilbert E. G.  Multimode regulators for systems with state control constraints and disturbance inputs.  Control Using Logic-Based Switching. 222, 104–117 (1997).
  23. El Bhih A., Benfatah Y., Rachik M.  Exact determination of maximal output admissible set for a class of semilinear discrete systems.  Archives of Control Sciences. 3, 523–552 (2020).
  24. Yamamoto K.  Time-variant feedback controller based on capture point and maximal output admissible set of a humanoid.  Advanced Robotics. 33 (18), 944–955 (2019).
  25. Larrache A., Lhous M., Ben Rhila S., Rachik M., Tridane A.  An output sensitivity problem for a class of linear distributed systems with uncertain initial state.  Archives of Control Sciences. 30 (1), 139–155  (2020).
  26. Ossareh H. R.  Reference governors and maximal output admissible sets for linear periodic systems.  International Journal of Control. 93 (1), 113–125 (2019).
  27. Osorio J., Ossareh H. R.  A Stochastic Approach to Maximal Output Admissible Sets and Reference Governors.  2018 IEEE Conference on Control Technology and Applications (CCTA). 704–709 (2018).
  28. Abdelhak A., Rachik M.  Model reduction problem of linear discrete systems: Admissibles initial states.  Archives of Control Sciences. 29 (1), 41–55 (2019).
  29. Lhous M., Rachik M., Magri E. M.  Ideal observability for bilinear discrete-time systems with and without delays in observation.  Archives of Control Sciences. 28 (4), 601–616 (2018).
  30. Benfatah Y., El Bhih A., Rachik M., Tridane A.  On the Maximal Output Admissible Set for a Class of Bilinear Discrete-time Systems.  International Journal of Control, Automation and Systems. 19, 3551–3568 (2021).
  31. Pimenta A. C. C., Dórea C. E. T.  (C,A)-invariant polyhedra and design of state observers with error limitation. IFAC Proceedings Volumes. 37 (21), 687–692 (2004).
  32. El Bhih A., Benfatah Y., Rhila S. B., Rachik M., Laaroussi A. El A.  A spatiotemporal prey-predator discrete model and optimal controls for environmental sustainability in the multifishing areas of Morocco. Discrete Dynamics in Nature and Society. 2020, Article ID: 2780651, 1–18 (2020).
  33. El Bhih A., Benfatah Y., Kouidere A., Rachik M.  A discrete mathematical modeling of transmission of COVID-19 pandemic using optimal control.  Communications in Mathematical Biology and Neuroscience. 2020, Article ID: 75, 1–23 (2020).
  34. El Bhih A., Ghazzali R., Rhila S. B., Rachik M., Laaroussi A. El A.  A discrete mathematical modeling and optimal control of the rumor propagation in online social network.  Discrete Dynamics in Nature and Society. 2020, Article ID: 4386476, 1–12 (2020).
  35. Gutman P.-O., Hagander P.  A new design of constrained controllers for linear systems.  IEEE Transactions on Automatic Control. 30 (1), 22–23 (1985).
  36. Zheng Q., Dong L., Lee D. H., Gao Z.  Active Disturbance Rejection Control for MEMS Gyroscopes.  IEEE Transactions on Control Systems Technology. 17 (6), 1432–1438 (2009).
  37. Dzielinski A., Sierociuk D.  Adaptive Feedback Control of Fractional Order Discrete State-Space Systems.  International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). 804–809 (2005).
  38. Oldham K. B., Spanier J.  The Fractional Calculus.  Academic Press (1974).
  39. Dzielinski A., Sierociuk D.  Stability of Discrete Fractional Order State-space Systems.  Journal of Vibration and Control. 14 (9–10), 1543–1556 (2008).
  40. Buslowicz M.  On some properties of the solution of state equation of discrete-time systems with delays.  Zesz. Nauk. Polit. Bial., Elektrotechnika. 1, 17–29 (1983), (in Polish).
  41. Hilfer R. (ed.)  Application of Fractional Calculus in Physics.  World Scientific, Singapore (2000).