In memory of V. F. Chekurin

2022;
: pp. 303–310
https://doi.org/10.23939/mmc2022.02.303
Received: March 07, 2022
Accepted: March 17, 2022

Mathematical Modeling and Computing, Vol. 9, No. 2, pp. 303–310 (2022)

1
Emergency Rescue Service of Kharkiv
2
Branch "R&D Institute of Gas Transportation" Ukrtransgaz Joint Stock Company

The purpose of the research article is to study the contribution of V. F. Chekurin to the development of science through a comprehensive and objective analysis of the publications of the author, his colleagues and co-authors.  In the creative heritage of V. F. Chekurin, it is proposed to single out three areas of his works: semiconductors, pipeline gas dynamics, and an elasticity problem.  It is shown that set of works by V. F. Chekurin can be called Chekurin's theory of pipeline gas dynamics.  It is recommended to be used for pipelines condition monitoring.  Verification of numerical modeling results according to the RR criterion showed that among the tested models, the model is suitable if $RR<1$.  This proves that the Chekurin–Khymko model can be registered in Data Base of Geospatial Objects.  The variation method of homogeneous solutions is proposed for the evaluation of residual stresses formed in cylindrical bodies.

  1. Stel'makh O. B., Chekurin V. F.  Poverhnostnaya relaksaciya energii i effekt Benediksa v poluprovodnikah.  Fizika i tehnika poluprovodnikov. 22 (9), 1698–1699 (1988), (in Russian).
  2. Stadnyk Y. V., Romaka V. A., Romaka G. Yu., Fruchart D., Chekurin V. F.  Metal–insulator transition induced by changes in composition in the Zr$_{1–x}$Sc$_x$NiSn solid solution.  Journal of Alloys and Compounds. 400 (1–2), 29–32 (2005).
  3. Romaka V. A., Stadnyk Y. V., Shelyapina M. G., Fruchart D., Chekurin V. F.  Specific features of the metal–insulator conductivity transition in narrow–gap semiconductors of the MgAgAs structure type.  Semiconductors. 40 (2), 131–136 (2006).
  4. Chekurin V. F.  Variational method for the solution of the problems of tomography of the stressed state of solids.  Materials Science. 35 (5), 623–633 (1999).
  5. Chekurin V. F.  An approach to solving of stress state tomography problems of elastic solids with incompatibility strains.  Mechanics of Solids. 35 (6), 29–37 (2000).
  6. Chekurin V. F., Kravchyshyn O. Z.  On the theory of acoustic tomography of stresses in solids.  Materials Science. 38 (2), 275–286 (2002).
  7. Chekurin V. F., Postolaki L. I.  A variational method for the solution of biharmonic problems for a rectangular domain.  Journal of Mathematical Sciences. 160 (3), 386–399 (2009).
  8. Chekurin V. F.  Integral photoelasticity relations for in homogeneously strained dielectrics.  Mathematical Modeling and Computing. 1 (2), 144–155 (2014).
  9. Chekurin V., Postolaki L.  Inverse problem for determination of residual stresses in neighborhood of heterogeneous materials joints.  Mashynoznavstvo. 6, 3–7 (2010), (in Ukrainian).
  10. Chekurin V., Postolaki L.  Problem of non-destructive determination of residual stresses in the pipeline on the bases of data of magnetoelastic measurements.  Fiz.-mat. model. inf. tehnol. 20, 218–228 (2014), (in Ukrainian).
  11. Chekurin V. F., Postolaki L. I.  Theoretical and experimental determination of residual stresses in flat joints.  Physico-chemical Mechanics of Materials. 45 (2), 153–162 (2009).
  12. Chekurin V. F., Kravchyshyn O. Z.  Inverse problem for acoustical tomography of stress fields in piecewisehomogeneous strip.  Proceedings of 8th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory DIPED 2003. 194–198 (2003).
  13. Chekurin V. F., Postolaki L. I.  Variational Method of Homogeneous Solutions in Axisymmetric Elasticity Problemsfor a Semiinfinite Cylinder.  Journal of Mathematical Sciences. 201, 175–189 (2014).
  14. Chekurin V. F.  Thermoelasticity of semiconductors: the many-continuum thermodynamic approach.  Encyclopedia of Thermal Stresses. 11, 5844–5858 (2014).
  15. Chekurin V. F.  A mathematical model for the transient processes of mass and momentum transfer in a long gas pipeline.  Fiz.-mat. model. inf. tehnol. 11, 210–219 (2010), (in Ukrainian).
  16. Chekurin V., Khymko O.  Mathematical modeling of a small pressure disturbance in gas flow of a long pipeline.  Mathematical Modeling and Computing. 4 (2), 126–138 (2017).
  17. Chekurin V., Khymko O.  Mathematical models for leak identification in a long gas pipeline.  Fiz.-mat. model. inf. tehnol. 25, 157–169 (2017), (in Ukrainian).
  18. Chekurin V., Khymko O.  Numerical study of transient processes in a long gas pipeline caused by depressurization.  Fiz.-mat. model. inf. tehnol. 26, 100–111 (2017), (in Ukranian).
  19. Chekurin V., Khymko O.  Waves of pressure in gas pipeline: A telegraph-type model.  2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). 157–160 (2018).
  20. Chekurin V., Ponomaryov Yu., Prytula M., Khymko O.  Development of an approach to automation of gas transmission system management.  Technology Audit and Production Reserves. 5 (1), 52–60 (2018).
  21. Chekurin V. F., Khymko O. M.  Mathematical model for controlling the integrity of the linear part of the main gas pipeline.  Scientific notes of TNU named after V. I. Vernadsky.  Series: technical sciences. 30 (69), 158–164 (2019).
  22. Chekurin V. F., Khymko O. M., Ponomaryov Yu. V.  The method of controlling the integrity of the linear part of the main gas pipeline according to the monitoring of flow parameters.  Scientific notes of TNU named after V. I. Vernadsky. Series: technical sciences. 30 (69), 234–240 (2019).
  23. Chekurin V. F., Khymko O. M.  Numerical modeling transient processes in a long gas pipeline.  Mathematical Modeling and Computing. 6 (2), 220–238 (2019).
  24. Chekurin V., Kushnir R., Ponomarev Y., Prytula M., Khymko O.  A Model of a System for GasTransmission Pipeline Integrity Monitoring.  In: Bolzon G., Gabetta G., Nykyforchyn H. (eds)  Degradation Assessment and Failure Prevention of Pipeline Systems.  Lecture Notes in Civil Engineering, vol. 102 (2021).
  25. Chekurin V. F., Postolaki L. I.  A variational method of homogeneous solutions for axisymmetric elasticity problems for cylinder.  Mathematical Modeling and Computing. 2 (2), 128–139 (2015).
  26. Chekurin V., Postolaki L.  Application of the Least Squares Method in Axisymmetric Biharmonic Problems.  Mathematical Problems in Engineering. 2016, Article ID: 345764 (2016).
  27. Chekurin V., Postolaki L.  Residual stresses in a finite cylinder.  Direct and inverse problems and their solving using the variational method of homogeneous solutions.  Mathematical Modeling and Computing. 5 (2), 119–133 (2018).
  28. Chekurin V. F., Postolaki L. I.  Application of the Variational Method of Homogeneous Solutions for the Optimal Control of the Axisymmetric Thermoelastic State of a Cylinder.  Journal of Mathematical Sciences. 243 (1), 128–144 (2019).
  29. Chekurin V. F., Postolaki L. I.  Axially symmetric elasticity problems for the hollow cylinder with the stress-free ends.  Analytical solving via a variational method of homogeneous solutions.  Mathematical Modeling and Computing. 7 (1), 48–63 (2020).
  30. Chekurin V. F., Postolaki L. I.  Application of the Variational Method of Homogeneous Solutions for theDetermination of Axisymmetric Residual Stresses in a Finite Cylinder.  Journal of Mathematical Sciences. 249, 539–552 (2020).
  31. Chekurin V., Pavlova A.  Mathematical modeling of elastic disturbance propagation in a structure containing a porous layer saturated with gas and water.  Mathematical Modeling and Computing. 3 (2), 120–134 (2016).
  32. Chekurin V., Brych T.  Finite element method for solving the problems of polarization-optical tomography of stresses in light-guide glass fiber preforms.  Fiz.-mat. model. inf. tehnol. 13, 163–172 (2011), (in Ukrainian).
  33. Belogurov V. P.  Criterion of model suitability for forecasting quantitative processes.  Soviet journal of automation and information sciences (English translation of Avtomatyka). 23 (3), 21–25 (1990).
  34. Belogurov V. P.  Assessment risk zones in failure of tailings dams using geoinformation system.  Eurasian Mining. 2, 74–81 (2021).
  35. Samoilenko N. I., Kostenko A. B., Senchuk T. S., Gavrilenko I. A.  Adequacy of pipeline systems functional reliability models. Monograph.  Publishing house "HTMT", Kharkiv (2009), (in Russian).
  36. Samoilenko N. I., Gavrilenko I. A., Senchuk T. S.  Creation of mathematical models for ordering graph edges of the pipeline distribution network.  Eastern-European Journal of Enterprise Technologies. 3 (4), 21–25 (2015), (in Russian).
  37. Prytula N. M., Gryniv O. D., Dmytruk V. A.  Simulation of nonstationary regimes of gas transmission systems operation.  Mathematical Modeling and Computing. 1 (2), 224–233 (2014).
  38. Pyanylo Ya., Prytula M., Prytula N., Lopuh N.  Models of mass transfer in gas transmission systems.  Mathematical Modeling and Computing. 1 (1), 84–96 (2014).
  39. P'yanylo Ya., P'yanylo H., Vasiunyk M.   Application of orthogonal polynomials for analysis of input numerical data in the problems of mass transfer.  Mathematical Modeling and Computing. 2 (1), 88–98 (2015).
  40. Prytula N., Pyanylo Ya., Prytula M.  Optimization of unsteady operating modes of gas mains.  Mathematical Modeling and Computing. 3 (2), 183–190 (2016).
  41. Prytula N., Frolov V., Prytula M.  Analytical methods of optimization of operational parameters of the main gas pipelines (gas mains).  Mathematical Modeling and Computing. 4 (1), 78–86 (2017).
  42. Pyanylo Ya., Prytula N., Prytula M., Khymko O.  On an invariant of a non-stationary model of pipelines gas flow.  Mathematical Modeling and Computing. 6 (1), 116–128 (2019).
  43. Zarytskyi O. V., Kostenko O. B., Bulaienko M. V.  Automation of geospatial objects converting into the classifiers according to the European data standards.  Mathematical Modeling and Computing. 7 (2), 228–238 (2020).
  44. Karpinsky Yu., Lyashchenko A., Lazorenko-Hevel N., Cherin A.  Architecture and functional model of the topographical database.  Inzhenerna geodeziya. 67, 67–81 (2019), (in Ukrainian).
  45. Dyadun S., Kuznetsov V., Yesilevskyi V.  Information technologies to estimation the effectiveness of water supply systems control depending on the degree of model uncertainty.  CEUR Workshop Proceedings. 2740, 137–145 (2020).
  46. Kuznetsov V., Dyadun S., Esilevsky V.  The control to aggregates of pumping stations using a regulator based on a neural network with fuzzy logic.  E3S Web of Conferences. 102, Article Number: 03007 (2019).
  47. Tevyashev A., Matviyenko O., Nikitenko G.  Construction of a stochastic model for a water supply network with hidden leaks and a method for detecting and calculating the leaks.  Eastern-European Journal of Enterprise Technologies. 6 (4), 29–38 (2019).
  48. Shostko I., Tevyashev A., Neofitnyi M., Ageyev D., Gulak S.  Information and Measurement System Based on Wireless Sensory.  2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). 705–710 (2019).
  49. Tevyashev A., Shostko I., Neofitnyi M., Koliadin A.  Laser Opto-Electronic Airspace Monitoring System in the Visible and Infrared Ranges.  2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD). 170–173 (2019).
  50. Pyanylo Ya. D., Bratash O. B.  The gas filtration in complex porous media with stagnant zones.  Mathematical Modeling and Computing. 7 (1), 179–185 (2020).