Stress-deformed state and strength of a locally heterogeneous electrically conductive layer

2022;
: pp. 750–756
https://doi.org/10.23939/mmc2022.03.750
Received: May 02, 2022
Revised: July 05, 2022
Accepted: August 11, 2022
1
Lviv Polytechnic National University
2
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine
3
Lviv Polytechnic National University

The key system of equations of the solid body model is presented, taking into account the structural heterogeneity of the material and the roughness of the real surface, which is applied to the study of interconnected fields in an unbounded heterogeneous conductive layer.  The effect of taking into account the dependences on the density of local Young's modulus and Poisson's ratio on the size effects of surface stresses in the layer and its strength limit is considered.

  1. Markovych B. M.  Quantum-statistical description of equilibrium characteristicsand diffusion processes in spatially limited metal systems. Thesis for DSc (2020).
  2. Nahirnyj T. S., Tchervinka K. A.  Fundamentals of the mechanics of locally non-homogeneous deformable solids.  Lviv, Rastr-7 (2018), (in Ukrainian).
  3. Burak Y. I., Nahirnyj T. S.  Matematicheskoe modelirovanie lokal'no-gradientnyh processov v inercionnyh termomehanicheskih sistemah.  Prikladnaja mehanika.  28 (12), 3–23 (1992), (in Russian).
  4. Nahirnyj T. S., Tchervinka K. A., Senyk Y. A.  Modeling local non-homogeneity electroconductive non-ferromagnetic thermoelastic solid.  Mathematical Modeling and Computing. 1 (2), 214–223 (2014).
  5. Nahirnyj T., Tchervinka K.  Mathematical modeling of structural and near-surface non-homogeneities in thermoelastic thin films.  Int. J. Eng. Sci.  91, 49–62 (2015).
  6. Kostrobij P. P., Markovych B. M.  Effect of Coulomb interaction on chemical potential of metal film.  Philosophical Magazine.  98 (21), 1991–2002 (2018).
  7. Nahirnyj T. S, Tchervinka K. A., Senyk Y. A.  Strength of electroconductive non-ferromagnetic layer. Size effect.  Physico-mathematical modeling and information technologies.  4, 124–130 (2019).
  8. Nahirnyj T. S, Tchervinka K. A., Boiko Z. V.  To the choice of boundary conditions in the problems of the locally gradient approach in thermomechanics.  Mathematical methods and physical and mechanical fields.  54 (3), 199–206 (2011).
  9. Nahirnyj T., Tchervinka K.  Natural boundary conditions and nearsurface non-homogeneity in nonferromagnetic electro conductive half-space and layer.  Physico-mathematical modeling and information technologies.  25, 100–112 (2017).
  10. Wu Q., Miao W.-S., Zhang Y.-D., Gao H.-J., Hui D.  Mechanical properties of nanomaterials: A review.  Nanotechnology Reviews.  9 (1), 259–273 (2020).
  11. Nahirnyj T., Tchervinka K.  Basics of mechanics of local non-homogeneous elastic bodies.  Bases of nanomechanics II.  Lviv, Rastr-7 (2014), (in Ukrainian).
  12. Nahirnyj T., Tchervinka K.  Interface phenomena and interaction energy at the surface of electroconductive solids.  Computational Methods in Science and Technology.  14 (2), 105–110 (2008).
  13. Kostrobij P. P., Markovych B. M., Polovyi V. Ye.  Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric-metal-dielectric structures.  Mathematical Modeling and Computing.  6 (2), 297–303 (2019).
  14. Kostrobij P. P., Markovych B. M., Polovyi V. Ye.  Frequency spectrum of surface plasmon-polariton waves: influence of Coulomb correlations.  Mathematical Modeling and Computing.  7 (1), 140–145 (2020).
  15. Kostrobij P. P., Markovych B. M.  The chemical potential and the work function of a metal film on a dielectric substrate.  Philosophical Magazine Letters.  99 (1), 12–20 (2019).
  16. Burak Y. Y., Halapats B. P., Hnidets' B. M.  Fizyko-mekhanichni protsesy v elektroprovidnykh tilakh.  Kyyiv, Naukova dumka (1978), (in Ukrainian).
  17. Oldham K. B.  A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface.  Journal of Electroanalytical Chemistry.  613 (2), 131–138 (2008).
  18. Burak Y., Nahirnyj T., Tchervinka K.  Local Gradient Thermomechanics.  In: Encyclopedia of thermal stresses., ed. Richard B. Hetnarski. Springer Publishers. P. 2794–2801 (2014).
  19. Mehanika razrushenija i prochnost' materialov: sprav. posobie; pod red. Panasjuka V. V.  Tom 1. Osnovy mehaniki razrushenija materialov. Kiev, Naukova dumka (1988), (in Russian).
Mathematical Modeling and Computing, Vol. 9, No. 3, pp. 750–756 (2022)