Modeling of a bulk material stress state in a conical hopper hole under vibration action

2022;
: pp. 968–976
https://doi.org/10.23939/mmc2022.04.968
Received: January 22, 2022
Accepted: November 01, 2022

Mathematical Modeling and Computing, Vol. 9, No. 4, pp. 968–976 (2022)

1
Department of Robotics and Integrated Technologies of Mechanical Engineering, Lviv Polytechnic National University
2
Department of Robotics and Integrated Technologies of Mechanical Engineering, Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

A model of a fine-grained bulk material stress state in a conical hopper hole under vibration during material unloading is proposed.  For the study, it is used a model of a discrete medium based on a balance of a small thickness elementary volume, in which the stress redistribution occurs by opening an outlet at the hopper bottom.  A formula for determining the material radial stress in the discharge conical hopper hole is obtained, taking into account all force factors influencing the bulk material behavior.  The influence of humidity, shape and geometric parameters of the hopper, and vibration intensity on the change of the bulk material stress state is investigated.  As a result, the efficiency of vibration to improve the conditions of the fine-grained bulk material leakage from the hoppers is established.

  1. Hayvas B., Dmytruk V. Torskyy A., Dmytruk A.  On methods of mathematical modeling of drying dispersed materials.  Mathematical Modeling and Computing.  4 (2), 139–147 (2017).
  2. Rabinovich E., Kalman H., Peterson P. F.  Granular material flow regime map for planar silos and hoppers.  Powder Technology.  377, 597–606 (2020).
  3. Di Carlo D., Edd J. F., Humphry K. J., Stone H. A., Toner M.  Particle segregation and dynamics in confined flows.  Physical Review Letters.  102, 094503 (2009).
  4. Park S. S., Kim E. S.  Jamming probability of granular flow in 3D hopper with shallow columns: DEM simulations.  Granular Matter.  22 (2), 77 (2020).
  5. Du J., Liu C., Tong L., Yin S., Wang L.  Effects of vibrations on tilted silo discharge.  Chemical Engineering Research and Design.  171, 247–253 (2021).
  6. Hashemnia K., Pourandi S.  Study the effect of vibration frequency and amplitude on the quality of fluidization of a vibrated granular flow using discrete element method.  Powder Technology.  327, 335–345 (2018).
  7. Sholovii Y. P., Maherus N. I., Zyska T., Sagymbekova A., Askarova N.  Modelling of the finely-dispersed noncoherent material flow from the loading hopper under vibration.  Proceedings Volume 11045, Optical Fibers and Their Applications 2018. 1104508 (2019).
  8. Hesse R., Krull F., Antonyuk S.  Experimentally calibrated CFD-DEM study of air impairment during powder discharge for varying hopper configurations.  Powder Technology.  372,  404–419 (2020).
  9. Zhu L., Lu H., Poletto M., Liu H., Deng Z.  Hopper discharge of cohesive powders using pulsated airflow.  AIChE Journal.  66 (7), 16240 (2020).
  10. Jafari A., Abolghandi A., Gharibi A., Khalili Parizi M. V., Begheri Jamebozorgi A.  Effects of local vibration on silo discharge and jamming: employing an experimental approach.  Journal of Particle Science & Technology.  4 (2), 91–100 (2018).
  11. Katalymov A. V., Liubartovych V. A.  Dosage of viscous and bulk materials.  Lviv, Khimiia (1990).