Numerical analysis on chaos attractors using a backward difference formulation

2022;
: pp. 898–908
https://doi.org/10.23939/mmc2022.04.898
Received: August 11, 2022
Revised: October 29, 2022
Accepted: October 30, 2022

Mathematical Modeling and Computing, Vol. 9, No. 4, pp. 898–908 (2022)

1
Faculty of Economics and Muamalat, Universiti Sains Islam Malaysia
2
The Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia
3
Faculty of Economics and Muamalat, University Sains Islam Malaysia
4
Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia
5
Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia

The chaos attractor is a system of ordinary differential equations which is known for having chaotic solutions for certain parameter values and an initial condition.  Research conducted in the current work establishes a backward difference algorithm to study these chaos attractors.  Different types of chaos mapping, namely the Lorenz chaos, 'sandwich' chaos and 'horseshoe' chaos will be analyzed.  Compared to other numerical methods, the proposed backward difference algorithm will show to be an efficient tool for analyzing solutions for the chaos attractors.

  1. Lorenz E. N.  Deterministic Nonperiodic Flow.  Journal of the Atmospheric Sciences.  20 (2), 130–141 (1963).
  2. Rössler O. E.  Different Types of Chaos in Two Simple Differential Equations.  Zeitschrift für Naturforschung A.  31 (12), 1664–1670 (1976).
  3. Hashim I., Noorani M. S. M., Ahmad R., Bakar S. A., Ismail E. S., Zakaria A. M.  Accuracy of the Adomian decomposition method applied to the Lorenz system.  Chaos, Solitons & Fractals.  28 (5), 1149–1158 (2006).
  4. Hayden K., Olson E., Edriss S. T.  Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations.  Physica D: Nonlinear Phenomena.  240 (18), 1416–1425 (2011).
  5. Sparrow C.  The Lorenz equations: bifurcations, chaos, and strange attractors. Vol. 41.  Springer Science & Business Media (2012).
  6. Brindha P., Rasi M., Ranjendran L.  Analytical solution of Lorenz equation using Homotopy analysis method.  Journal of Global Research in Mathematical Archives.  1 (6), 14–26 (2013).
  7. Muthukumar S., Thangapandi C., Mahalakshmi S., Veeramuni M.  Analytical solution of a differential equation that predicts the weather condition by Lorenz equations using Homotopy perturbation method.  Global Journal of Pure and Applied Mathematics.  13 (11), 8065–8074 (2017).
  8. Shen B. L., Wang M., Yan P., Yu H., Song J., Da C. J.  Stable and unstable regions of the Lorenz system.  Scientific Reports.  8 (1), 14982 (2018).
  9. Guellal S., Grimalt P., Cherruault Y.  Numerical study of Lorenz's equation by the Adomian method.  Computers & Mathematics with Applications.  33 (3), 25–29 (1997).
  10. Pchelintsev A. N.  Numerical and physical modeling of the dynamics of the Lorenz system.  Numerical analysis and Applications.  7 (2), 159–167 (2014).
  11. Algaba A., Merino M., Rodríguez–Luis A. J.  Superluminal periodic orbits in the Lorenz system.  Communications in Nonlinear Science and Numerical Simulation.  39 (2), 220–232 (2016).
  12. Paul R., Majumder D.  Development of Algorithm for Lorenz Equation using Different Open Source Softwares.  Journal of Computer Science & Systems Biology.  10 (4), 087–092 (2017).
  13. Li J.-M., Wang Y.-L., Zhang W.  Numerical Simulation of the Lorenz–Type Chaotic System Using Barycentric Lagrange Interpolation Collocation Method.  Advances in Mathematical Physics.  2019, 1030318 (2019).
  14. Krogh F. T.  A variable-step, variable-order multistep method for the numerical solution of ordinary differential equations.  Proc. of the IFIP Congress in Information Processing.  68, 194 (1968).
  15. Suleiman M.  Solving nonstiff higher order ODEs directly by the direct integration method.  Applied Mathematics and Computation.  33 (3), 197–219 (1989).
  16. Abdul Majid Z., Suleiman M.  Direct integration implicit variable steps method for solving higher order systems of ordinary differential equations directly.  Sains Malaysiana.  35 (2), 63–68 (2006).
  17. Ibrahim Z. B., Othman K. I., Suleiman M.  Implicit $r$-point block backward differentiation formula for solving first-order stiff ODEs.  Applied Mathematics and Computation.  186 (1), 558–565 (2007).
  18. Rasedee A. F. N., Suleiman M. B., Ibrahim Z. B.  Solving Nonstiff Higher Order Odes Using Variable Order Step Size Backward Difference Directly.  Mathematical Problems in Engineering. 2014, 565137 (2014).
  19. Asnor A. I., Mohd Yatim S. A., Ibrahim Z. B.  Solving Directly Higher Order Ordinary Differential Equations by Using Variable Order Block Backward Differentiation Formulae.  Symmetry.  11 (10), 1289 (2019).
  20. Ibrahim Z. B., Zainuddin N., Othman K. I., Suleiman M., Zawawi I. S. M.  Variable Order Block Method for Solving Second Order Ordinary Differential Equations.  Sains Malaysiana.  48 (8), 1761–1769 (2019).
  21. Rasedee A. F. N., Abdul Sathar M. H., Hamzah S. R., Ishak N., Wong T. Z., Koo L. F., Ibrahim S. N. I.  Two-point block variable order step size multistep method for solving higher order ordinary differential equations directly.  Journal of King Saud University–Science.  33 (3), 101376 (2021).
  22. Bashforth F., Adams J. C.  An attempt to test the theories of capillary action by comparing the theoretical and measured forms of drops of fluid.  University Press (1883).
  23. Moulton F. R.  New methods in exterior ballistics.  University of Chicago Press (1926).
  24. Suleiman M. B.  Generalised multistep Adams and backward differentiation methods for the solution of stiff and non-stiff ordinary differential equations.  University of Manchester PhD Thesis (1979).
  25. Omar Z.  Developing parallel block methods for solving higher order ODEs directly.  University Putra Malaysia PhD Thesis (1999).
  26. Abdul Majid Z.  Parallel block methods for solving ordinary differential equations.  University Putra Malaysia PhD Thesis (2004).
  27. Ibrahim Z. B.  Block multistep methods for solving ordinary differential equations.  University Putra Malaysia PhD Thesis (2006).
  28. Othman K. I.  Partitioning Techniques and Their Parallelization for Stiff System of Ordinary Differential Equations.  University Putra Malaysia PhD Thesis (2007).
  29. Rasedee A. F. N.  Direct method using backward difference for solving higher order ordinary differential equations.  University Putra of Malaysia Masters Thesis (2009).
  30. Azmi N. A.  Direct Integration Block Method for Solving Higher Order Ordinary Differential Equations.  University Putra of Malaysia Masters Thesis (2010).
  31. Krogh F. T.  Algorithms for Changing the Step Size.  SIAM Journal on Numerical Analysis.  10 (5), 949–965 (1973).
  32. Rasedee A. F. N., Suleiman M., Ibrahim Z. B.  Solving Nonstiff Higher Order ODEs Using Variable Order Step Size Backward Difference Directly.  Mathematical Problems in Engineering.  2014, 565137 (2014).
  33. Mohd Ijam H., Suleiman M. B., Rasedee A. F. N., Senu N., Ahmadian A., Salahshour S.  Solving Nonstiff Higher-Order Ordinary Differential Equations Using 2-Point Block Method Directly.  Abstract and Applied Analysis.  2014, Article ID 867095 (2014).
  34. Rasedee A. F. N., Abdul Sathar M. H., Othman K. I., Hamzah S. R., Ishak N.  Two-Point Approximating non linear higher order ODEs by a three point block algorithm.  Plos One. 16 (2), e0246904 (2021).
  35. Rasedee A. F. N., Abdul Sathar M. H., Deraman F., Mohd Ijam H., Suleiman M. B., Saaludin N., Rakhimov A.  2 point block backward difference method for solving Riccati type differential problems.  AIP Conference Proceeding.  1775 (1), 030005 (2016).
  36. Rasedee A. F. N., Abdul Sathar M. H., Ishak N., Kamaruddin N. S., Nazri M. A., Ramli N. A., Ismail I., Sahrim M.  Solution for nonlinear Duffing oscillator using variable order variable stepsize block method.  MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics.  33 (2), 165–176 (2017).
  37. Rasedee A. F. N., Hamzah S. R., Ishak N., Mohd Ijam H., Suleiman M. B., Ibrahim Z. B., Abdul Sathar M. H., Ramli N. A., Kamaruddin N. S.  Variable order variable stepsize algorithm for solving nonlinear Duffing oscillator.  Journal of Physics: Conference Series.  890 (1), 012045 (2017).
  38. Rasedee A. F. N., Mohd Ijam H., Abdul Sathar M. H., Hamzah S. R., Ishak N., Sahrim M., Ismail I.  Solution for nonlinear Riccati equation by block method.  AIP Conference Proceedings.  1974 (1), 020071 (2018).
  39. Rasedee A. F. N., Jamaludin N. A., Najib N., Abdul Sathar M. H., Wong T. J., Koo L. F.  Variable order step size method for solving orbital problems with periodic solutions.  Mathematical Modeling and Computing.  9 (1), 101–110 (2022).
  40. Mohd Ijam H., Ibrahim Z. B., Suleiman M. B., Senu N., Rasedee A. F. N.  Order and stability of 2-point block backward difference method.  AIP Conference Proceedings. 1974 (1), 020054 (2018).