Variable order step size method for solving orbital problems with periodic solutions

2022;
: pp. 101–110
https://doi.org/10.23939/mmc2022.01.101
Received: July 07, 2021
Revised: November 24, 2021
Accepted: November 24, 2021

Mathematical Modeling and Computing, Vol. 9, No. 1, pp. 101–110 (2022)

1
Faculty of Economics and Muamalat, Universiti Sains Islam Malaysia
2
Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia
3
Faculty of Economics and Muamalat, Universiti Sains Islam Malaysia
4
The Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia
5
Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia
6
Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia

Existing variable order step size numerical techniques for solving a system of higher-order ordinary differential equations (ODEs)  requires direct calculating the integration coefficients at each step change.  In this study, a variable order step size is presented for direct solving higher-order orbital equations.  The proposed algorithm calculates the integration coefficients only once at the beginning and, if necessary, once at the end.  The accuracy of the numerical approximation is validated with well-known orbital differential equations.  To reduce computational costs, we obtain the relationship for the predictor-corrector algorithm between integration coefficients of various orders.  The efficiency of the proposed method is substantiated by the graphical representation of accuracy at the total evaluation steps.

  1. Krogh F. T.  A variable-step, variable-order multistep method for the numerical solution of ordinary differential equations.  Proc. of the IFIP Congress in Information Processing.  68, 194 (1968).
  2. Hall G., Watt J. M.  Modern numerical methods for ordinary differential equations.  Clarendon Press (1976).
  3. Suleiman M. B.  Generalised multistep Adams and backward differentiation methods for the solution of stiff and non-stiff ordinary differential equations.  University of Manchester PhD Thesis (1979).
  4. Rasedee A. F. N.  Direct method using backward difference for solving higher order ordinary differential equations.  University Putra of Malaysia PhD Thesis (2009).
  5. Rasedee A. F. N., Suleiman M. B., Ibrahim Z. B.  Solving nonstiff higher order odes using variable order step size backward difference directly.  Mathematical Problems in Engineering.  2014, Article ID 565137 (2014).
  6. Shampine L. F., Gordon M. K.  Computed solutions of ordinary differential equations.  W. H. Freeman (1975).
  7. Lambert J. D.  Computational methods in ordinary differential equations.  John Wiley & Son (1973).
  8. Rasedee A. F. N., Hamzah S. R., Ishak N., Mohd Ijam H., Suleiman M. B., Ibrahim Z. B., Abdul Sathar M. H., Ramli N. A., Kamaruddin N. S.  Variable order variable stepsize algorithm for solving nonlinear Duffing oscillator.  Journal of Physics: Conference Series.  890, 012045 (2017).
  9. Rasedee A. F. N., Suleiman M. B., Ibrahim Z. B.  Solving nonstiff higher order odes using variable order step size backward difference directly.  Mathematical Problems in Engineering.  2014, Article ID 565137 (2014).
  10. Simos T. E.  Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution.  Applied Mathematics Letters.  17 (5), 601–607 (2004).
  11. Mohd Ijam H., Suleiman M. B., Rasedee A. F. N., Senu N., Ahmadian A., Salahshour S.  Solving nonstiff higher-order ordinary differential equations using 2-point block method directly.  Abstract and Applied Analysis.  2014, Article ID 867095 (2014).
  12. Mohd Ijam H., Ibrahim Z. B., Suleiman M. B., Senu N., Rasedee A. F. N.  Order and stability of 2-point block backward difference method.  AIP Conference Proceedings.  1974, 020054 (2018).
  13. Shokri L., Mehdizadeh Khalsaraei M., Atashyar A.  A new two-step hybrid singularly P-stable method for the numerical solution of second-order IVPs with oscillating solutions.  Iranian Journal of Mathematical Chemistry.  11 (2), 113–132 (2020).
  14. Wu X., Wang B., Mei L.  Oscillation-preserving algorithms for efficiently solving highly oscillatory second-order ODEs.  Numerical Algorithms.  86, 693–727 (2021).
  15. Rasedee A. F. N., Abdul Sathar M. H., Hamzah S. R., Ishak N., Wong T. Z., Koo L. F., Ibrahim S. N. I.  Block variable order step size multistep method for solving higher order ordinary differential equations directly.  Journal of King Saud University-Science.  33 (3), 101376 (2021).
  16. Rasedee A. F. N., Abdul Sathar M. H., Othman K. I., Hamzah S. R., Ishak N.  Two-Point Approximating non linear higher order ODEs by a three point block algorithm.  Plos One.  16 (2), e0246904 (2021).
  17. Rasedee A. F. N., Abdul Sathar M. H., Deraman F., Mohd Ijam H., Suleiman M. B., Saaludin N., Rakhimov A.  2 point block backward difference method for solving Riccati type differential problems.  AIP Conference Proceedings.  1775, 030005 (2016).
  18. Stiefel E., Bettis D. G.  Stabilization of Cowell's method.  Numerische Mathematik.  12, 154–175 (1969).
  19. Franco J. M., Palacios M.  High-order P-stable multistep methods.  Journal of Computational and Applied Mathematics.  30 (1), 1–10 (1990).