Experimental and Theoretical Spectroscopic Study of Thione-Thiol Tautomerism of New Hybrides 1,3,4-Oxadiazole-2-thion with Acridine-9(10H)-one

2018;
: pp. 419-428
1
Zaporizhzhia National University
2
Zaporizhzhia National University
3
Zaporizhzhia National University

The synthesis of new hybrids 1,3,4-oxadiazol-2-thione with acridine 9(10H)-one is carried out. Their structure is confirmed by LC-MS, IR-, 1H and 13C NMR-spectroscopy. The thione-thiol equilibrium was investigated in eight solvents with different relative permittivity with the help of UV-spectroscopy and quantum chemistry methods using DFT/B3LYP and HF bases. The results of the experimental calculations are in agreement with theoretical ones and have shown the prevalence of the thione. There were established centers for reactions with the mechanism SE and AE, taking into account the electronic structural formulas and the results of calculating the atom charges of compounds.

[1] Svoboda G., Poore G., Simpson P., Boder G.: J. Pharm. Sci., 1966, 55, 758. https://doi.org/10.1002/jps.2600550803
[2] Shoji A., Hasegawa T., Kuwahara M. et al.: Bioorg. Med. Chem. Lett., 2007, 17, 776. https://doi.org/10.1016/j.bmcl.2006.10.072
[3] Sondhi S., Singh J., Rani R. et al.: Eur. J. Med. Chem., 2010, 45, 555. https://doi.org/10.1016/j.ejmech.2009.10.042
[4] Karpenko Y., Omelyanchik L.: J. Org. Pharm. Chem., 2017, 15, 21. https://doi.org/10.24959/ophcj.17.917
[5] Omel'yanchik L.: Sintez, svoistva i biologicheskaya aktivnost' N- i S-zameshhennykh akridina, khinolina, piridina. Doctoral thesis, Moskva 1991.
[6] Mayer J.: Acc. Chem. Res., 2011, 44, 36. https://doi.org/10.1080/1047840X.2011.544635
[7] Maupin C., Castillo N., Taraphder S. et al.: J. Am. Chem. Soc., 2011, 133, 6223. https://doi.org/10.1021/ja1097594
[8] Zhang M.-T., Irebo T., Johansson O., Hammarström L.: J. Am. Chem. Soc., 2011, 133, 13224. https://doi.org/10.1021/ja203483j
[9] Weinberg D., Gagliardi C., Hull J. et al.: Chem. Rev., 2012, 112, 4016. https://doi.org/10.1021/cr200177j
[10] Sobolewski A., Domcke W.: Chem. Phys., 2003, 294, 73. https://doi.org/10.1016/S0301-0104(03)00388-4
[11] Schultz T., Samoylova E., Radloff W. et al.: Science, 2004, 306, 1765. https://doi.org/10.1126/science.1104038
[12] Bach A., Tanner C., Manca C. et al.: J. Chem. Phys., 2003, 119, 5933. https://doi.org/10.1063/1.1603740
[13] Meuwly M., Bach A., Leutwyler S.: J. Am. Chem. Soc., 2001, 123, 11446. https://doi.org/10.1021/ja010893a
[14] Casadesús R., Moreno M., Lluch J.: Chem. Phys., 2003, 290, 319. https://doi.org/10.1016/S0301-0104(03)00173-3
[15] Lima M., Coutinho K., Canuto S., Rocha W.: J. Phys. Chem. A, 2006, 110, 7253. https://doi.org/10.1021/jp060821b
[16] Siwek A., Wujec M., Wawrzycka-Gorczyca I. et al.: Heteroat. Chem., 2008, 19, 337. https://doi.org/10.1002/hc.20433
[17] Holla B., Shivanda M., Akberali P. et al.: Il Farmaco, 1996, 51, 785.
[18] Shouji E., Buttry D.: J. Phys. Chem. B, 1998, 102, 1444. https://doi.org/10.1021/jp972825+
[19] Katritzky A., Wang Z., Offerman R.: J. Heterocycl. Chem., 1990, 27, 139. https://doi.org/10.1002/jhet.5570270204
[20] Katritzky A., Borowiecka J., Fan W., Brannigan L.: J. Heterocycl. Chem., 1991, 28, 1139. https://doi.org/10.1002/jhet.5570280451
[21] Raper E.: Coord. Chem. Rev., 1996, 153, 199. https://doi.org/10.1016/0010-8545(95)01233-8
[22] Raper E.: Coord. Chem. Rev., 1997, 165, 475. https://doi.org/10.1016/S0010-8545(97)90167-3
[23] Koparır M., Çetin A., Cansız A.: Molecules, 2010, 10, 475. https://doi.org/10.3390/10020475
[24] Charistos D., Vagenas G., Tzavellas L. et al.: J. Heterocycl. Chem., 1994, 31, 1593. https://doi.org/10.1002/jhet.5570310653
[25] Tsoleridis C., Charistos D., Vagenas G.: J. Heterocycl. Chem., 1997, 34, 1715. https://doi.org/10.1002/jhet.5570340612
[26] Aydogan F., Turgut Z., Öcal N., Erdem S.: Turk. J. Chem., 2002, 26, 159.
[27] Arthur E., Weissberger J.: Technique of Organic Chemistry. Interscience, New York 1971.
[28] Sysoev P.: Sintez heterocyclicheskykh soedinenij na osnove proizvodnykh acridonacetilovykh kyslot: PhD thesis, Moskva 2015.
[29] Majumdar P., Pati A., Patra M. et al.: Chem. Rev., 2014, 114, 2942. https://doi.org/10.1021/cr300122t
[30] Oliveira C., Lira B., Barbosa-Filho J. et al.: Molecules, 2012, 17, 10192. https://doi.org/10.3390/molecules170910192
[31] Fröhlichová Z., Tomaščiková J., Imrich I. et al.: Heterocycles, 2009, 77, 1019. https://doi.org/10.3987/COM-08-S(F)80
[32] Barton D., Ollis U.: Obshhaya Organicheskaya Khimiya. Tom 8. Аzotsoderzhashhie geterotsikly. Khimiya, Moskva 1985.
[33] Bedlovičová Z., Imrich J., Kristian P. et al.: Heterocycles, 2010, 80, 1047. https://doi.org/10.3987/COM-09-S(S)83
[34] Zou X., Lai L., Jin G.: J. Agr. Food Chem., 2002, 50, 3757. https://doi.org/10.1021/jf0201677
[35] Salimon J., Salih N., Yousif E.: Arab. J. Chem., 2010, 3, 205. https://doi.org/10.1016/j.arabjc.2010.06.001
[36] Frisch Æ.: Gaussian 09W Reference, Gaussian, Inc., Wallingford, CT, 2009.
[37] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[38] Tirado-Rives J., Jorgensen W.: J. Chem. Theory Comput., 2008, 4, 297. https://doi.org/10.1021/ct700248k
[39] Rassolov V., Ratner M., Pople J. et al.: J. Comp. Chem., 2001, 22, 976. https://doi.org/10.1002/jcc.1058
[40] Caricato M.: J. Chem. Theory Comput., 2012, 8, 5081. https://doi.org/10.1021/ct300382a
[41] Pyykko P., Laaksonen L.: J. Phys. Chem., 1984, 88, 4892. https://doi.org/10.1021/j150665a017
[42] Meison S.: Elektronnye Spektry Pogloshheniya Heterotsiklicheskikh Soedinenij. Khimiya, Moskva 1966.
[43] Zhirov N.: Lyuminofory. Svetyashhiesya Tverdye Sostavy. Gos. izd-vo oboron. prom., Moskva 1940.
[44] http://webbook.nist.gov/cgi/cbook.cgi?ID=C578950&Mask=400#UV-Vis-Spec
[45] Antsyferov Y.: Dielektrycheskye svoistva vodnykh rastorov soley shchelochnykh metalov, halohennoodorodnykh kyslot i shchelochei. PhD thesis, Irkutsk 2006.
[46] Amalanathan M., Rastogi V., Joe I. et al.: Spectrochim Acta A, 2011, 78, 1437. https://doi.org/10.1016/j.saa.2011.01.023
[47] Padmaja L., Ravi Kumar C., Sajan D. et al.: J. Raman Spect., 2009, 40, 419. https://doi.org/10.1002/jrs.2145
[48] Sagdinc S., Pir H.: Spectrochim. Acta A, 2009, 73, 181. https://doi.org/10.1016/j.saa.2009.02.022