Experimental and DFT Study of Azo-bis-Cyanuric Chloride Polar Diels-Alder Reaction with a Number of Dienes. Ways of Further Modification of the Obtained Products

: pp. 18-23
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

The reaction of azo-bis-cyanuric chloride as strong electrophilic aza-dienophile in Diels-Alder cycloaddition with a number of dienes of different nucleophilicity, namely 2,3-dimethylbutadiene, 2-methylbutadiene and 1-acethoxybutadiene, was carried out and computationally analyzed on B3LYP/6-31G(d,p) level. Local and global reactivity indices, based on FMO theory, as well as TS geometries and activation energies were calculated. Reaction proceeds rapidly with high yields and in mild conditions. Ways of products further modification by chlorine atoms substitution were also studied. Compounds were found to be stable in alkaline conditions but rapidly decompose in the presence of acids.

[1] Carruthers W.: Cycloaddition Reactions in Organic Synthesis. Pergamon Press, Oxford 1990.

[2] Fringuelli F., Taticchi A.: The Diels-Alder Reaction. J. Wiley & Sons, Chichester 2002.

[3] Tšupova S., Mäeorg U.: Heterocycles, 2014, 88, 129. https://doi.org/10.3987/REV-13-SR(S)3

[4] Liu B., Sun T., Zhou Z., Du L.: Med. Chem., 2015, 5, 131. https://doi.org/10.4172/2161-0444.1000255

[5] Polovkovych S., Karkhut A., Marintsova N., Lesyk R. et al.: J. Heterocyclic Chem., 2013, 50, 1419. https://doi.org/10.1002/jhet.890

[6] Loew P., Weis C.: J. Heterocyclic Chem., 1976, 13, 829. https://doi.org/10.1002/jhet.5570130427

[7] Willoughby P., Jansma M., Hoye T.: Nature Protocols, 2014, 9, 643. https://doi.org/10.1038/nprot.2014.042

[8] Bochevarov A., Harder E., Hughes T. et al.: Int. J. Quantum Chem., 2013, 113, 2110. https://doi.org/10.1002/qua.24481

[9] Parr R., Von Szentpaly L., Liu S.: J. Am. Chem. Soc., 1999, 121, 1922. https://doi.org/10.1021/ja983494x

[10] Domingo L., Aurell M., Perez P., Contreras R.: Tetrahedron, 2002, 58, 4417. https://doi.org/10.1016/S0040-4020(02)00410-6

[11] Becke A.: J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913.

[12] Lee C., Yang W., Parr R.: Phys. Rev. B, 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785

[13] Frisch M., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., Petersson G., Nakatsuji H., Caricato M., Li X., Hratchian H., Izmaylov A., Bloino J., Zheng G., Sonnenberg J., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J., Peralta J., Ogliaro F., Bearpark M., Heyd J., Brothers E., Kudin K., Staroverov V., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J., Iyengar S.,Tomasi J., Cossi M., Rega N., Millam J., Klene M., Knox J., Cross J., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R., Yazyev O., Austin A., Cammi R., Pomelli C., Ochterski J., Martin R., Morokuma K., Zakrzewski V., Voth G., Salvador P., Dannenberg J., Dapprich S., Daniels A., Farkas O., Foresman J., Ortiz J., Cioslowski J., Fox D., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.

[14] Cossi M., Rega N., Scalmani G., Barone V.: J. Comp. Chem., 2003, 24, 669. https://doi.org/10.1002/jcc.10189

[15] Chamorro E., Perez P.: J. Chem. Phys., 2005, 123, 114107.

[16] Contreras R., Fuentealba P., Galvan M., Perez P.: Chem. Phys. Lett., 1999, 304, 405. https://doi.org/10.1016/S0009-2614(99)00325-5

[17] Lakhdar S., Terrier F., Vichard D., Berionni G. et al.: Chem. Eur. J., 2010, 16, 5681. https://doi.org/10.1002/chem.200903008