Combustion Kinetics of Petroleum Coke by Isoconversional Modelling

2018;
: pp. 505-510
1
Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia
2
1 Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 2 Department of Chemical Engineering, Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia
3
1 Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 2 Department of Chemical Engineering, Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia

The study examined the physico-chemical characteristics and combustion kinetics of petroleum coke or petcoke (PCK). The results revealed that PCK contains significantly high carbon, fixed carbon, and calorific value with low sulphur, and ash content. The combustion characteristics of PCK revealed the temperatures of ignition ranged from 764 to 795 K; peak decomposition from 808 to 875 K and burn-out from 857 to 933 K. The combustion performance and reactivity analyses were examined based on the ignition ratio, devolatilization ratio, burnout ratio, and combustion characteristic factor. The activation energy and pre-exponential factor were also determined. The results revealed that PCK is highly reactive during combustion contrary to previous reports in the literature. Overall, the findings demonstrate that combustion is a practical approach for energy recovery from petcoke.

[1] Vivoda, V.: Energ. Policy, 2009, 37, 4615. https://doi.org/10.1016/j.enpol.2009.06.007
[2] Bayram A., Müezzinoğlu A., Seyfioğlu R.: Fuel Process. Technol., 1999, 60, 111. https://doi.org/10.1016/S0378-3820(99)00041-7
[3] Green P., Martin A.: 2015. Refining Capacity Outlook to 2020: 2015 Developments. Energy Insights. https://goo.gl/KWhmhf.
[4] Global Data: 2017. H1 2016 Global Capacity and Capital Expenditure Outlook for Refineries. Developing Countries Drive Growth in Global Refining Industry. https://goo.gl/P7R28C
[5] Zhang Y., Yao M., Gao S. et al.: Appl. Energ., 2015, 160, 820. https://doi.org/10.1016/j.apenergy.2015.01.009
[6] Nemanova V., Abedini A., Liliedahl T., Engvall K.: Fuel, 2014, 117, 870. https://doi.org/10.1016/j.fuel.2013.09.050
[7] Murthy B., Sawarkar A., Deshmukh N. et al.: Can. J. Chem. Eng., 2014, 92, 441. https://doi.org/10.1002/cjce.21908
[8] Shlewit H., Alibrahim M.: Fuel, 2006, 85, 878. https://doi.org/10.1016/j.fuel.2005.08.036
[9] Chen J., Lu X.: Resour., Conserv., Recy., 2007, 49, 203. https://doi.org/10.1016/j.resconrec.2006.03.012
[10] Malekshahian M., Hill J.: Energ. Fuel., 2011, 25, 5250. https://doi.org/10.1021/ef201231w
[11] Yuan S., Zhou Z., Li J., Wang F.: Appl. Energ., 2012, 92, 854. https://doi.org/10.1016/j.apenergy.2011.08.042
[12] Yoon S., Choi Y.-C., Lee S.-H., Lee J.-G.: Korean J. Chem. Eng., 2007, 24, 512. https://doi.org/10.1007/s11814-007-0090-y
[13] Jayaraman K., Gokalp I.: Appl. Therm. Eng., 2015, 80, 10. https://doi.org/10.1016/j.applthermaleng.2015.01.026
[14] Qian W., Xie Q., Huang Y. et al.: Int. J. Mining Sci. Technol., 2012, 22, 645. https://doi.org/10.1016/j.ijmst.2012.08.009
[15] Yuzbasi N., Selçuk N.: Fuel, 2012, 92, 137. https://doi.org/10.1016/j.fuel.2011.08.026
[16] Patun R., Ramamurthi J., Vetter M. et al.: Clean Fuels Production Using Plasma Energy Pyrolysis System [in:] Ogunsola O., Gamwo I. (Eds.) Ultraclean Transportation Fuels, ACS Publ. 2007. https://doi.org/10.1021/bk-2007-0959.ch003
[17] Zhan X., Jia J., Zhou Z., Wang F.: Energ. Convers. Manage., 2011, 52, 1810. https://doi.org/10.1016/j.enconman.2010.11.009
[18] Munir S., Sattar H., Nadeem A., Azam M.: Energ. Sourc. A: 2017, 39, 775. https://doi.org/10.1080/15567036.2016.1263254
[19] Slopiecka K., Bartocci P., Fantozzi F.: Appl. Energ., 2012, 97, 491. https://doi.org/10.1016/j.apenergy.2011.12.056
[20] Lopez-Velazquez M., Santes V., Balmaseda J., Torres-Garcia E.: J. Anal. Appl. Pyrol., 2013, 99, 170. https://doi.org/10.1016/j.jaap.2012.09.016
[21] Nyakuma B., Oladokun O., Jauro A., Nyakuma D.: IOP Conf. Series: Materials Science and Engineering, 2017, 217(1), 012013.
[22] Nyakuma B., Jauro A.: GeoSci. Eng., 2016, 62, 6.
[23] Nyakuma B.: Bulg. Chem. Commun., 2016, 48, 746.
[24] Nyakuma B., Jauro A., Oladokun O. et al.: J. Phys. Sci., 2016, 27, 1. https://doi.org/10.21315/jps2016.27.3.1
[25] Oladokun O., Ahmad A., Abdullah T. et al.: Appl. Therm. Eng., 2016, 105, 931. https://doi.org/10.1016/j.applthermaleng.2016.04.165
[26] Parvez A., Hong Y., Lester E., Wu T.: Energ. Fuel., 2017, 31, 1555. https://doi.org/10.1021/acs.energyfuels.6b02000
[27] Shen D., Gu S., Jin B., Fang M.: Biores. Technol., 2011, 102, 2047. https://doi.org/10.1016/j.biortech.2010.09.081