Structure and Dynamics of Pyrene-Labeled Poly(acrylic acid): Molecular Dynamics Simulation Study

2020;
: pp. 77 - 80
1
V. N. Karazin Kharkiv National University
2
V. N. Karazin Kharkiv National University

An atomistic model for molecular dynamics (MD) simulations of the single chain poly(acrylic acid) (PAA), terminally substituted with two pyrene moieties, was developed. MD simulations of the structure and conformational dynamics of pyrene-labeled PAA for a varying dissociation degree (α) of the COOH group revealed that the attachment of pyrene dyes to PAA alters significantly its conformational behavior. At acidic pH (α = 0), the PAA chain collapsed into the random coil conformation, so that the two pyrene moieties formed the stable π-π stacking structure. However, at basic pH (α = 1), the PAA chain was expanded and stretched facing the pyrene dyes apart into aqueous solution.

  1. Duhamel J.: 7-Pyrene Fluorescence to Study Polymeric Systems [in:] Chen P. (Ed.), Molecular Interfacial Phenomena of Polymers and Biopolymers. Woodhead Publishing, 2005, 214-248. https://doi.org/10.1533/9781845690830.2.214
  2. Saroj S., Rajput S.: Drug Dev. Ind. Pharm., 2018, 44, 1198. https://doi.org/10.1080/03639045.2018.1438467
  3. Wei M., Gao Y., Li X., Serpe M.: Polym. Chem., 2017, 8, 127. https://doi.org/10.1039/C6PY01585A
  4. Arora K., Hwang K., Turro N.: Macromolecues, 1986, 19, 2806. https://doi.org/10.1021/ma00165a025
  5. Kramer M., Steger J., Hu Y., McCormick C.: Macromolecules, 1996, 29, 1992. https://doi.org/10.1021/ma951087p
  6. Winnik F.: Chem. Rev., 1993, 93, 587. https://doi.org/10.1021/cr00018a001
  7. Costa T., Miguel Md., Lindman B. et al.: J. Phys. Chem. B, 2005, 109, 11478. https://doi.org/10.1021/jp050236v
  8. Pokhrel M., Bossmann S.: J. Phys. Chem. B, 2000, 104, 2215. https://doi.org/10.1021/jp9917190
  9. Farhangi S., Casier R., Li L. et al.: Macromolecules, 2016, 49, 9597. https://doi.org/10.1021/acs.macromol.6b02455
  10. Seixas de Melo J., Costa T., Miguel Md. et al.: J. Phys. Chem. B, 2003, 107, 12605. https://doi.org/10.1021/jp0346054
  11. Liu F., Urban M.: Prog. Polym. Sci., 2010, 35, 3. https://doi.org/10.1016/j.progpolymsci.2009.10.002
  12. Costa T., de Melo S., Castro C. et al.: J. Phys. Chem. B, 2010, 114, 12439. https://doi.org/10.1021/jp1020214
  13. Ramos J., Forcada J., Hidalgo-Alvarez R.: Chem. Rev., 2014, 114, 367. https://doi.org/10.1021/cr3002643
  14. Schmaljohann D.: Adv. Drug Delivery Rev., 2006, 58, 1655. https://doi.org/10.1016/j.addr.2006.09.020
  15. Wang S., Huang P., Chen X.: ACS Nano, 2016, 10, 2991. https://doi.org/10.1021/acsnano.6b00870
  16. Motornov M., Roiter Y., Tokarev I., Minko S.: Prog. Polym. Sci., 2010, 35, 174. https://doi.org/10.1016/j.progpolymsci.2009.10.004
  17. Gao Y., Ahiabu A., Serpe M.: ACS Appl. Mater. Inter., 2014, 6, 13749. https://doi.org/10.1021/am503200p
  18. Feng N., Dong J., Han G., Wang G.: Macromol. Rapid Commun., 2014, 35, 721. https://doi.org/10.1002/marc.201300863
  19. Payne W., Svechkarev D., Kyrychenko A., Mohs A.: Carbohydr. Polym., 2018, 182, 132. https://doi.org/https://doi.org/10.1016/j.carbpol.2017.10.054
  20. Zhou X., Zhao K.: Phys. Chem. Chem. Phys., 2017, 19, 20559. https://doi.org/10.1039/C7CP02460F
  21. Qin S., Yong X.: Soft Matter., 2017, 13, 5137. https://doi.org/10.1039/C7SM00637C
  22. Katiyar R., Jha P.: Polymer, 2017, 114, 266. https://doi.org/10.1016/j.polymer.2017.03.007
  23. Sharma A., Smith J., Walters K., Rick S.: J. Chem. Phys., 2016, 145, 234906. https://doi.org/10.1063/1.4972062
  24. Patel K., Chockalingam R., Natarajan U.: Mol. Simul., 2017, 43, 691. https://doi.org/10.1080/08927022.2017.1295454
  25. Jha K., Desai S., Li J., Larson G.: Polymers, 2014, 6, 1414. https://doi.org/10.3390/polym6051414
  26. Reith D., Müller B., Müller-Plathe F., Wiegand S.: J. Chem. Phys., 2002, 116, 9100. https://doi.org/10.1063/1.1471901
  27. Chockalingam R., Natarajan U.: Mol. Simul., 2015, 41, 1110. https://doi.org/10.1080/08927022.2014.947481
  28. Sappidi P., Natarajan U.: J. Mol. Graphics Model., 2017, 75, 306. https://doi.org/https://doi.org/10.1016/j.jmgm.2017.04.007
  29. Sulatha M., Natarajan U.: Ind. Eng. Chem. Res., 2011, 50, 11785. https://doi.org/10.1021/ie2014845
  30. Kyrychenko A., Korsun O., Gubin I. et al.: J. Phys. Chem. C, 2015, 119, 7888. https://doi.org/10.1021/jp510369a
  31. Kyrychenko A., Pasko D., Kalugin O.: Phys. Chem. Chem. Phys., 2017, 19, 8742. https://doi.org/10.1039/C6CP05562A
  32. Berendsen H., Grigera J., Straatsma T.: J. Phys. Chem., 1987, 91, 6269. https://doi.org/10.1021/j100308a038
  33. Bussi G., Donadio D., Parrinello M.: J. Chem. Phys., 2007, 126, 014101/1. https://doi.org/10.1063/1.2408420
  34. Darden T., York D., Pedersen L.: J. Chem. Phys., 1993, 98, 10089. https://doi.org/10.1063/1.464397
  35. Hess B., Bekker H., Berendsen H., Fraaije J.: J. Comput. Chem., 1997, 18, 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  36. Hess B.: J. Chem. Theory Comput., 2008, 4, 116. https://doi.org/10.1021/ct700200b
  37. Van Der Spoel D., Lindahl E., Hess B. et al.: J. Comput. Chem., 2005, 26, 1701. https://doi.org/10.1002/jcc.20291
  38. Humphrey W., Dalke A., Schulten K.: J. Mol. Graphics, 1996, 14, 33. https://doi.org/10.1016/0263-7855(96)00018-5
  39. Kyrychenko A.: Method. Appl. Fluoresc., 2015, 3, 042003/1. https://doi.org/10.1088/2050-6120/3/4/042003
  40. Laguecir A., Ulrich S., Labille J. et al.: Eur. Polym. J., 2006, 42, 1135. https://doi.org/10.1016/j.eurpolymj.2005.11.023
  41. Van Der Spoel D., Lindahl E., Hess B. et al.: Gromacs user manual version 4.5.4. www.gromacs.org, 2010.
  42. Svechkarev D., Kyrychenko A., Payne W., Mohs A.: Soft Matter., 2018, 14, 4762. https://doi.org/10.1039/C8SM00908B