Quasi-maximum likelihood estimation of the Component-GARCH model using the stochastic approximation algorithm with application to the S&P 500

2021;
: pp. 379–390
https://doi.org/10.23939/mmc2021.03.379
Received: April 25, 2021
Revised: May 07, 2021
Accepted: May 17, 2021

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 379–390 (2021)

1
IPIM, National Schools of Applied Sciences, Khouribga, Sultan Moulay Slimane University, Morocco
2
IPIM, National Schools of Applied Sciences, Khouribga, Sultan Moulay Slimane University, Morocco
3
IPIM, National Schools of Applied Sciences, Khouribga, Sultan Moulay Slimane University, Morocco; LaMSD, Higher School of Technology, Oujda, Mohammed First University, Morocco

The component GARCH (CGARCH) is suitable to better capture the short and long term of the volatility dynamic.  Nevertheless, the parameter space constituted by the constraints of the non-negativity of the conditional variance, stationary and existence of moments, is only ex-post defined via the GARCH representation of the CGARCH.  This is due to the lack of a general method to determine a priori the relaxed constraints of non-negativity of the CGARCH($N$) conditional variance for any $N\geq 1$. In this paper, a CGARCH parameter space constructed from the GARCH(1,1) component parameter spaces is provided a priori to identifying its GARCH form.  Such a space fulfils the relaxed constraints of the CGARCH conditional variance non-negativity to be pre-estimated ensuring the existence of a QML estimation in the sense of the stochastic approximation algorithm.  Simulation experiment as well as empirical application to the S&P500 index are presented and both show the performance of the proposed method.

  1. Engle R. F.  Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation.  Econometrica: Journal of the econometric society. 50 (4), 987–1007 (1982).
  2. Bollerslev T.  Generalized autoregressive conditional heteroskedasticity.  Journal of econometrics. 31 (3), 307–327 (1986).
  3. Bollerslev T.  On the correlation structure for the generalized autoregressive conditional heteroskedastic process.  Journal of Time Series Analysis. 9, 121–131 (1988).
  4. Ding Z., Granger C. W.  Modelling volatility persistence of speculative returns: a new approach.  Journal of econometrics. 73 (1), 185–215 (1996).
  5. Ding Z., Granger C. W., Engle R. F.  A long memory property of stock market returns and a new model.  Journal of empirical finance. 1 (1), 83–106 (1993).
  6. Andersen T. G., Bollerslev T.  Heterogeneous information arrivals and return volatility dynamics: Uncovering the long\-run in high frequency returns.  The journal of Finance. 52, 975–1005 (1997).
  7. Andersen T. G., Bollerslev T., Diebold F. X.  The distribution of realized exchange rate volatility.  Journal of the American statistical association. 96 (453), 42–55 (2001).
  8. Bollerslev T., Wright J. H.  Semiparametric estimation of long-memory volatility dependencies: The role of high\-frequency data.  Journal of econometrics. 98 (1), 81–106 (2000).
  9. Karanasos M.  The second moment and the autocovariance function of the squared errors of the GARCH model.  Journal of Econometrics. 90 (1), 63–76 (1999).
  10. Maheu J.  Can GARCH models capture long-range dependence?  Studies in Nonlinear Dynamics & Econometrics. 9 (4) (2005).
  11. Engle R. F., Lee G.  A long-run and short-run component model of stock return volatility.  Cointegration, Causality, and Forecasting: A Festschrift in Honour of Clive WJ Granger.  475 (1999).
  12. Settar A., Idrissi N. F., Badaoui M.  New approach in dealing with the non-negativity of the conditional variance in the estimation of GARCH model.  Central European Journal of Economic Modelling and Econometrics. 13, 55 (2021).
  13. Allal J., Benmoumen M.  Parameter Estimation for GARCH(1,1) Models Based on Kalman Filter.  Advances and Applications in Statistics. 25, 15 (2011).
  14. Spall J. C.  Implementation of the simultaneous perturbation algorithm for stochastic optimization.  IEEE Transactions on aerospace and electronic systems. 34 (3), 817–823 (1998).
  15. Spall J. C.  Multivariate stochastic approximation using a simultaneous perturbation gradient approximation.  IEEE transactions on automatic control. 37 (3), 332–341 (1992).
  16. Bhatnagar S., Prashanth H. L., Prashanth L. A.  Lecture Notes in Control and Information Sciences.  Series Advisory. 434 (2013).
  17. Francq C., Zakoian J. M.  GARCH models: structure, statistical inference and financial applications.  John Wiley & Sons (2019).