On the computational estimation of high order GARCH model

2021;
: pp. 797–806
https://doi.org/10.23939/mmc2021.04.797
Received: May 23, 2021
Accepted: June 07, 2021

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 797–806 (2021)

1
IPIM, National Schools of Applied Sciences, Khouribga, Sultan Moulay Slimane University, Morocco
2
IPIM, National Schools of Applied Sciences, Khouribga, Sultan Moulay Slimane University, Morocco
3
University Mohammed First, Highest School of Technologies, Oujda, Morocco

To guarantee the non-negativity of the conditional variance of the GARCH process, it is sufficient to assume the non-negativity of its parameters.  This condition was empirically violated besides rendering the GARCH model more restrictive.  It was subsequently  relaxed for some GARCH orders by necessary and sufficient constraints.  In this paper, we generalized an approach for the QML estimation of the GARCH$(p,q)$ parameters for all orders $p\geq 1$ and $q\ge 1$ using a constrained Kalman filter.  Such an approach allows a relaxed QML estimation of the GARCH without the need to identify and/or apply the relaxed constraints to the parameters.  The performance of our method is demonstrated through Monte Carlo simulations and empirical applications to real data.

  1. Bollerslev T.  Generalized autoregressive conditional heteroskedasticity.  Journal of econometrics. 31 (3), 307–327 (1986).
  2. French K. R., Schwert G. W., Stambaugh R. F.  Expected stock returns and volatility.  Journal of financial Economics. 19 (1), 3–29 (1987).
  3. Engle R. F., Ito T., Lin W. L.  Meteor showers or heat waves? Heteroskedastic intra-daily volatility in the foreign exchange market.  Working paper No. 2609 (1988).
  4. Nelson D. B., Cao C. Q.  Inequality constraints in the univariate GARCH model.  Journal of Business & Economic Statistics. 10 (2), 229–235 (1992).
  5. Tsai H., Chan K. S.  A note on inequality constraints in the GARCH model.  Econometric Theory. 24 (3), 823–828 (2008).
  6. Conrad C., Karanasos M.  Negative volatility spillovers in the unrestricted ECCC-GARCH model.  Econometric Theory. 26 (3), 838–862 (2010).
  7. He C., Teräsvirta T.  Properties of the Autocorrelation Function of Squared Observations for Second-order Garch Processes Under Two Sets of Parameter Constraints. Journal of Time Series Analysis. 20, 23–30 (1999).
  8. Wuertz D., Wuertz M. D., Team R. C.  The fGarch Package.  Wuertz, Diethelm, Maintainer Diethelm Wuertz, and Rmetrics Core Team (2013).
  9. Ghalanos A., Ghalanos M. A., Rcpp L.  Package 'rugarch' (2019).
  10. Settar A., Fatmi N. I., Badaoui M.  New Approach in Dealing with the Non-Negativity of the Conditional Variance in the Estimation of GARCH Model.  Central European Journal of Economic Modelling and Econometrics. 13 (1), 55–74 (2021).
  11. Settar A., Fatmi N. I., Badaoui M.  Quasi-maximum likelihood estimation of the Component-GARCH model using the stochastic approximation algorithm with application to the S&P 500. Mathematical Modeling and Computing. 8 (3), 379–390 (2021).
  12. Hung J. C.  Robust Kalman filter based on a fuzzy GARCH model to forecast volatility using particle swarm optimization.  Soft Computing. 19, 2861–2869 (2015).
  13. Simon D.  Optimal state estimation: Kalman, H infinity, and nonlinear approaches.  John Wiley & Sons (2006).
  14. Steenbergen M. R.  Maximum likelihood programming in R. University of North Carolina.  Chapel Hill (2006).
  15. Baillie R. T., Bollerslev T.  The message in daily exchange rates: a conditional-variance tale.  Journal of Business & Economic Statistics. 20 (1), 60–68 (1989).