In this article, we present a new algorithm for digital image processing noised by mixed Gaussian-impulse noise. Our mathematical model is based on the divide-conquer technique coupled with a reaction-diffusion system. We first decompose our image into low and high-frequency components by convolving each with a predefined convolutional filter. Further, we use a simple scheme of different weights to integrate and collect these processed sub-images into a filtered image. Finally, we apply our Reaction-Diffusion system to increase the contrast in the image. A number of experimental results are described to illustrate the performance of our algorithm and show that it is very effective in eliminating mixed Gaussian-impulse noise, increasing the contrast of the image and preserving the edges.
- Tomasi C., Manduchi R. Bilateral filtering for gray and color images. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 839–846 (1998).
- Buades A., Coll B., Morel J.-M. A non-local algorithm for image denoising. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). 60–65 (2005).
- Helstrom C. W. Image restoration by the method of least squares. Journal of the Optical Society of America. 57 (3), 297–303 (1967).
- Zirhem M., Alaa N. Texture synthesis by reaction diffusion process. Annals of the University of Craiova, Mathematics and Computer Science Series. 42, 56–69 (2015).
- Alaa N., Zirhem M. Entropy solution for a fourth-order nonlinear degenerate problem for image decomposition. J. Adv. Math. Stud. 11, 412–427 (2018).
- Alaa N., Zirhem M. Bio-inspired reaction diffusion system applied to image restoration. International Journal of Bio-inspired Computation. 12 (2), 128–137 (2018).
- Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Patterns Analysis and Machine Intelligence. 12 (7), 629–639 (1990).
- Alvarez L., Lions P. L., Morel J. M. Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM Journal of Numerical Analysis. 29 (3), 845–866 (1992).
- Catté F., Lions P. L., Morel J. M., Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis. 29 (1), 182–193 (1992).
- Morfu S. On some applications of diffusion processes for image processing. Physics Letters A. 373 (29), 2438–2444 (2009).
- Ait Oussous M., Alaa N., Ait Khouya Y. Anisotropic and nonlinear diffusion applied to image enhancement and edge detection. International Journal of Computer Applications in Technology. 49 (2), 122–133 (2014).
- Mallat S., Hwang W. L. Singularity detection and processing with wavelets. IEEE Transactions on Information Theory. 38 (2), 617–643 (1992).
- Agaian S., McClendon S. A. Novel medical image enhancement algorithms. Proc. SPIE 7532, Image Processing: Algorithms and Systems VIII, 75320W (2010).
- Turing A. M. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B. 237, 37–72 (1952).
- Prigogine I., Nicolis G. Biological order, structure and instabilities. Quart. Rev. Biophys. 4, 107–148 (1971).
- Gierer A., Meinhardt H. A theory of biological pattern formation. Kybernetik. 12, 30–39 (1970).
- Ambrosio B., Aziz-Alaoui M. A. Synchronisation dans un réseau d'équations aux dérivées partielles de type Fitzhugh-Nagumo généralisé, équations aux dérivées partielles et leurs applications. Actes du colloque Edp-Normandie. 119–131 (2012).
- Nomura A., Ichikawa M., Sianipar R. H., Miike H. Reaction-Diffusion Algorithm for Vision Systems. Vision Systems: Segmentation and Pattern Recognition. 61–80 (2007).
- Charbonnier P., Feraud L., Aubert G., Barlaud M. Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image processing. 6 (2), 298–311 (1997).
- Lopez-Rubio E. Restoration of images corrupted by gaussian and uniform impulsive noise. Pattern Recognition. 43 (5), 1835–1846 (2010).
- Liu J., Huan Z., Huang H., Zhang H. An adaptive method for recovering image from mixed noisy data. International Journal of Computer Vision. 85, 182–191 (2009).
- Rodriguez P., Rojas R. A., Wohlberg B. Mixed gaussian-impulse noise image restoration via total variation. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1077–1080 (2012).
- Liu J., Tai X., Huang H., Huan Z. A Weighted Dictionary Learning Model for Denoising Images Corrupted by Mixed Noise. IEEE Transactions on Image Processing. 22 (3), 1108–1120 (2012).
- Stout Q. F. Supporting divide and conquer algorithm in image processing. J. of Parallel and Distributed Computing. 4 (1), 95–115 (1987).
- Bacquey N. Packing problem: A divide and conquer algorithm on cellular automata. Automata and JAC. 1–10 (2012).
- Zhuang P., Fu X., Huang Y., Ding X. Image enhancement using divide and conquer strategy. Journal of Visual Communication and Image Representation. 45, 137–146 (2017).