The structure and properties of modified poly(lactiс acid) films suitable for use as packaging materials and paper lamination were studied. Modification of poly(lactiс acid) of different degrees of crystallinity with glycerol was performed. The influence of film formation conditions, the amount of glycerin plasticizer, the nature of poly(lactiс acid) on the structure, surface morphology and physical and mechanical properties of modified poly(lactiс acid) materials was studied. Modified film materials can be recommended for use in the packaging industry and paper lamination.
1. Caminero, M.Á., Chacón, J.M., García-Plaza, E., Núñez, P.J., Reverte, J.M., Becar, J.P. (2019). Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Polymers, 11, 799. https://doi.org/10.3390/polym11050799
2. Wei, L., Luo, S., McDonald, A. G., Agarwal, U. P., Hirth, K. C. et al. (2017). Preparation and Characterization of the Nanocomposites from Chemically Modified Nanocellulose and Poly(lactic acid). Journal of Renewable Materials, 5(5), 410-422. https://doi.org/10.7569/JRM.2017.634144
3. Pham Le T.P., Opaprakasit P. (2020). Preparation of Polylactide/Modified Clay Bio-composites Employing Quaternized Chitosan-Modified Montmorillonite Clays for Use as Packaging Films. Chemical Engineering Transactions, 78, 115-120. doi:10.3303/CET2078020.
4. Pandele, A.M., Constantinescu, A., Radu, I.C., Miculescu, F., Ioan Voicu, S., Ciocan, L.T. (2020). Synthesis and Characterization of PLA-Micro-structured Hydroxyapatite Composite Films. Materials, 13, 274. https://doi.org/10.3390/ma13020274
5. Liu A., Hong Z., Zhuang X., Chen X., Cui Y., Liu Y., Jing X. (2008). Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Acta Biomater. 4(4), 1005. https://doi.org/10.1016/j.actbio.2008.02.013
6. Li D, Jiang Y, Lv S, Liu X, Gu J, Chen Q, et al. (2018) Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS ONE, 13(3), e0193520. https://doi.org/10.1371/journal.pone.0193520
7. Chieng, B.W., Ibrahim, N.A., Yunus, W.M.Z.W. and Hussein, M.Z. (2013), Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. Journal of Applied Polymer Science, 130(6), 4576-4580. https://doi.org/10.1002/app.39742
8. Maiza, M., Benaniba, M. T., Quintard, G., Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 26(5), 581-590. https://doi.org/10.1590/0104-1428.1986
9. Yu L., Toikka G., Dean K., Bateman S., Yuan Q., Filippou C., et al. (2013). Foaming Behaviour and Cell Structure of Poly(Lactic Acid) after Various Modifications. Polymer International, 62(5), 759-765. https://doi.org/10.1002/pi.4359
10. Liu, J., Zhang, S., Zhang, L., & Yiqing, B. (2014). Preparation and rheological characterization of long chain branching polylactide. Polymer, 55, 2472-2480. https://doi.org/10.1016/j.polymer.2014.02.024
11. Corre, Y.-M.; Duchet, J.; Reignier, J.; Maazouz, A. (2011). Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheologica Acta, 50 (7-8), 613-629. https://doi.org/10.1007/s00397-011-0538-1
12. Zhong, W., Ge, J., Gu, Z., Li, W., Chen, X., Zang, Y. and Yang, Y. (1999), Study on biodegradable polymer materials based on poly(lactic acid). I. Chain extending of low molecular weight poly(lactic acid) with methylenediphenyl diisocyanate. Journal of Applied Polymer Science., 74, 2546-2551. https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10<2546::AID-APP24>3.0.CO;2-Z
13. Liu J., Lou L., Yu W., Liao R., Li R., Zhou C. (2010). Long chain branching polylactide: Structures and properties. Polymer, 51, 5186-5197. https://doi.org/10.1016/j.polymer.2010.09.002
14. Standau, T.; Zhao, C.; Murillo Castellón, S.; Bonten, C.; Altstädt, V. (2019). Chemical Modification and Foam Processing of Polylactide (PLA). Polymers, 11, 306. https://doi.org/10.3390/polym11020306
15. Tengfei Sh., Mangeng L., Liyan L. (2013). Modification of the Properties of Polylactide/ Polycaprolactone Blends by Incorporation of Blocked Polyisocyanate. Journal of Macromolecular Science, Part A, 50:5, 547-554. https://doi.org/10.1080/10601325.2013.781463
16. Shakti Ch., N Raghu, Anand R. (2021). Effect of maleic anhydride grafted polylactic acid concentration on mechanical and thermal properties of thermoplasticized starch filled polylactic acid blends. Polymers and Polymer Composites, 29 (9), S400-S410.
https://doi.org/10.1177/09673911211004194
17. Kowalczyk, M., Piorkowska, E. (2012), Mechanisms of plastic deformation in biodegradable polylactide/poly(1,4-cis-isoprene) blends. Journal of Applied Polymer Science, 124, 4579-4589. https://doi.org/10.1002/app.35489
18. Semenyuk N., Kysil Kh., Shapoval K., Dudok G., Skorokhoda V. (2021). Investigation of physical modification of poly(lactiс acids). Chemistry, Technology and Application of Substances, 4 (1), 198-205. https://doi.org/10.23939/ctas2021.01.198
19. Rhim, J.-W., Mohanty, A.K., Singh, S.P. and Ng, P.K.W. (2006). Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting. Journal of Applied Polymer Science, 101, 3736-3742. https://doi.org/10.1002/app.23403