Mathematical model of dynamics of vibrating systems working environments

2022;
: 44-50
https://doi.org/10.23939/ujmems2022.01.044
Received: January 28, 2022
Revised: March 16, 2022
Accepted: March 30, 2022
1
Design and Operation of Machines Department, Lviv Polytechnic National University
2
Department of Equipment Design and Operation

 Using the apparatus of the special periodic Ateb-functions in combination with the asymptotic methods of nonlinear mechanics, the nonlinear mathematical models of motion of working environment of the oscillation system, which dependences take into account resilient and viscid making tensions from descriptions of the deformation state of environment, her physical and mechanical properties and features of co-operation of environment with the oscillation system, are worked out. The nonlinear model for describing the dynamics of the working environment of oscillating systems is more flexible, because the nonlinearity index, which depends on the type of working load, significantly affects the results of the oscillating loading process. It allows us to take into account the type of load, and, accordingly, increase the level of adequacy of the constructed analytical model of the oscillatory process that needs to be investigated. Taking into account this model, the study of various processes in oscillating systems can be carried out, in particular in different modes of vibration processing. 

[1]  Subach  A.  P.  Dynamyka  protsessov  y  mashyn  ob’emnoi  obrabotky.,  Ryha:  Zynatne,  1991  [in Russian]  
[2] Panovko Ya. H. Vnutrennee trenye pry kolebanyiakh upruhykh system. M.: Fyzmathyz, 1960 [in Russian] 
[3]  Bolotyn  V.  V.  Dynamycheskaia  ustoichyvost  upruhykh  system.  M.,  Hostekhyzdat.  1956  [in Russian] 
[4]  Stotsko Z. A., Topilnytskyi V. H., Kusyi  Ya. M., Velyka O. T., Matematychna model opysu dynamiky tekhnolohichnykh seredovyshch neliniinykh mekhanichnykh system obroblennia ta transportuvannia, Avtomatyzatsiia vyrobnychykh protsesiv v mashynobuduvanni ta pryladobuduvanni. Mizhhaluzevyi zbirnyk naukovykh prats.-2011, vyp. 45, s.122-128 [in Ukrainian] 
[5]  Sokil  B. I. Periodychni  Ateb-funktsii  v  doslidzhenni  odnochastotnykh  rozv‘iazkiv  deiakykh khvylovykh rivnian. Pratsi naukovoho tovarystva im. Shevchenka. 1997. T.1. - s. 588-592 [in Ukrainian] 
[6] Mytropolskyi Yu. A. Metod usrednenyia v nelyneinoi mekhanyke. K.: Naukova dumka, 1971 [in Ukrainian] 
[7] Sokil B.I. Pro odyn sposib pobudovy odnochastotnykh rozviazkiv dlia neliniinoho khvylovoho rivniannia.  Ukr.mat.zhurn. 1994. No. 6. s. 782–785 [in Ukrainian]