In this paper, we study the existence of weak solutions for a class of nonlinear parabolic equations with regular data in the setting of variable exponent Sobolev spaces. We prove a "version" of a weak Lebesgue space estimate that goes back to "Lions J. L. Quelques méthodes de résolution des problèmes aux limites. Dunod, Paris (1969)" for parabolic equations with anisotropic constant exponents ($p_i(\cdot)=p_i$).
- Almeida A., Harjulehto P., Hästö P., Lukkari T. Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces. Annali di Matematica Pura ed Applicata. 194 (4), 405–424 (2015).
- Antontsev S., Shmarev S. Anisotropic Parabolic Equations with variable non linearity. Publicacions Matemàtiques. 53 (2), 355–399 (2009).
- Atik Y. Introduction aux problèmes elliptiques quasi-linéaires а donnée mesure. Cours spéciaux de l'ENS-Kouba, Alger (1998).
- Bendahmane M., Wittbold P. Renormalized solutions for nonlinear elliptic equations with variable exponents and $L^1$-data. Nonlinear Analysis: Theory, Methods & Applications. 70 (2), 567–583 (2009).
- Boureanu M.-M., Vélez-Santiago A. Fine regularity for elliptic and parabolic anisotropic Robin problems with variable exponents. Journal of Differential Equations. 266 (12), 8164–8232 (2019).
- Brezis H. Analyse fonctionnelle: Théorie et applications. Masson, Paris (1983).
- Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011).
- Fan X. Anisotropic variable exponent Sobolev spaces and $\mathop{\longrightarrow}\limits^{p(x)}$-Laplacian equations. Complex Variables and Elliptic Equations. 56 (7–9), 623–642 (2011).
- Fan X. Local boundedness of quasi-minimizers of integral functionals with variable exponent anisotropic growth and applications. Nonlinear Differential Equations and Applications. 17 (5), 619–637 (2010).
- Lions J. L. Quelques méthodes de résolution des problèmes aux limites. Dunod, Paris (1969).
- Mokhtari F. Regularity of the Solution to Nonlinear Anisotropic Elliptic Equations with Variable Exponents and Irregular Data. Mediterranean Journal of Mathematics. 14, 141 (2017).
- Mokhtari F. Anisotropic parabolic problems with measur data. Differential Equations and Applications. 2, 123–150 (2010).
- Mokhtari F. Problèmes paraboliques anisotropes а données dans un espace d'Orlicz ou mesures. Thèse de doctorat. (2011).
- Prignet A. Problèmes elliptiques et paraboliques dans un cadre non variationnel. UMPA-ENS Lyon France (1997).
- Rakotoson J. M. A compactness lemma for quasilinear problems: application to parabolic equations. Journal of Functional Analysis. 106 (2), 358–374 (1992).
- Simon J. Compact sets in the space $L^p(0,T;B)$. Annali di Matematica Pura ed Applicata. 146, 65–96 (1987).
- Stampacchia G. Le problème de Dirichlet pour les èquations elliptiques du seconde ordre à coefficientes discontinus. Annales de l'Institut Fourier. 15 (1), 189–258 (1965).
- Troisi M. Theoremi di inclusione per Spazi di Sobolev non isotropi. Ricerche di Matematica. 18, 3–24 (1969).