Argentinian Sugar Cane Vinasse: Characterization of Phenolic Compounds and Evaluation of Adsorption as a Possible Remediation Technique

2022;
: pp. 484 - 491
1
CEDECOR (Centro de Estudio de Compuestos Orgánicos), Facultad de Ciencias Exactas, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
2
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas
3
Universidad Nacional de La Plata (UNLP), Calle 115 y 47, (1900) La Plata, Argentina
4
CEDECOR (Centro de Estudio de Compuestos Orgánicos), Facultad de Ciencias Exactas

Chemical composition of sugar cane vinasse (Tucumán, Argentina) was studied finding high concentration of organic compounds. Phenolic compounds were partially characterized, finding mostly flavonoids, anthocyanins, as well as resorcinol and ferulic acid derivatives. Adsorption isotherms of phenolic compounds and total organic compounds were measured on four commercial activated carbons with different physical and chemical properties at two temperatures. The isotherm shape depends on the type of carbon and the adsorption capacity is enhanced as temperature increases. Enthalpies of the adsorption process were estimated, revealing that the adsorption of organic compounds is a chemisorption process, while the adsorption of phenolic compounds is a physisorption process on three of the tested carbons and a chemisorption process on the other one (CONCARBO).

[1] García, A.; Rojas, C. Posibilidades de Uso de la Vinaza en la Agricultura de Acuerdo con su Modo de Acción en Los Suelos. Nota Técnica Tecnicaña 2006, 10, 3-13.
[2] https://inta.gob.ar/noticias/energia-limpia-para-un-ambiente-sano
[3] Alfaro Portuguez, R.; Ocampo Chinchilla, R. Cambios Físico-Químicosprovocados por la Vinaza en un Suelo Vertisol en Costa Rica. XIX Congreso de la asociación de Técnicos Azucareros de Centroamérica ATACA, 1-12 y 13 de Setiembre del 2013; Costa Rica, San José, 2013.
[4] Parnaudeau, V.; Condom, N.; Oliver, R.; Cazevieille, P.; Recous, P. Vinasse Organic Matter Quality and Mineralization Potential, as Influenced by Raw Material, Fermentation and Concentration Processes. Bioresour. Technol. 2008, 99, 1553-1562. https://doi.org/10.1016/j.biortech.2007.04.012
[5] Robertiello, A. Upgrading of Agricultural and Agroindustrial Waste: The Treatment of Distillery Effluents (Vinasse) in Italy. Agric. Wastes 1981, 4, 387-395. https://doi.org/10.1016/0141-4607(82)90033-6
[6] Coca, M.; Garcı́a, M.T.; Gonzalez, G.; Peña, M.; García, J.A. Study of Coloured Components Formed in Sugar Beet Processing. Food Chem. 2004, 86, 421-433. https://doi.org/10.1016/j.foodchem.2003.09.017
[7] España-Gamboa, E.; Mijangos-Cortes, J.; Barahona-Perez, L.; Dominques-Maldonado, G.; Hernández-Zarate, G.; Alzate-Gaviria, L. Vinasses: Characterization and Treatments. Waste Manag. Res. 2011, 29, 1235-1250. https://doi.org/10.1177/0734242X10387313
[8] Gutiérrez, C.; Grosso, J.; Bullón, L.; Rennola, L., Salazar, F., Cardenas, A. Ultrafiltration de Vinazas Provenientes de Destilerías de Etanol. Revista Ciencia y Tecnología 2009, 30, 121-126.
[9] Díaz Marrero, M.A.; Cabrera Díaz, A.; Regalon Ramos, C. Evaluación del Modelo de Rusten en un Filtro Empacado Aireado Tratando Vinaza Cruda Cubana. RIHA 2019, 40, 39-49. https://riha.cujae.edu.cu/index.php/riha/article/view/487
[10] Lorenzo-Acosta, Y.; Doménech-López, F.; Eng-Sánchez, F.; Almazán-del Olmo, O.; Chanfón-Curbelo, J. M. Tratamiento Industrial de Vinazas de Destilerías en Reactores UASB. Tecnología Química 2015, 35, 108-123.
[11] Cabrera, Díaz A.; Díaz Marrero, M.A. Tratamiento de Vinaza Cubana en un Reactor Anaerobio Empacado de Flujo Ascendente. RIHA 2013, 34, 41-49.
[12] Susial Badajoz, P.; Pérez Báez, S.; López-Pérez, L. Estudio y Análisis Económico en el Tratamiento de Vinazas. Tecnología Del Agua 2001, 21, 48-56.
[13] Chaile, A.; Viera, H.; Ferreyra de Ruiz Holgado, M. Oxidación y Recuperación de Sales Inorgánicas de un Efluente de la Industria Alcoholera, VIIIº Congreso Argentino de Ingeniería Industrial, 12 y 13 de Noviembre de 2015; Córdoba, Argentina, 2015.
[14] Caqueret, V.; Bostyn, S.; Cagnon, B.; Fauduet, H. Purification of Sugar Beet Vinasse - Adsorption of Polyphenolic and Dark Colored Compounds on Different Commercial Activated Carbons. Bioresour. Technol. 2008, 99, 5814-5821. https://doi.org/10.1016/j.biortech.2007.10.009
[15] Gaspard, S.; Altenor, S.; Passe-Coutrin, N.; Ouensanga, A.; Brouers, F. Parameters from a New Kinetic Equation to Evaluate Activated Carbons Efficiency for Water Treatment. Water Res. 2006, 40, 3467-3477. https://doi.org/10.1016/j.watres.2006.07.018
[16] Brouers, F.; Sotolongo-Costa, O. Generalized Fractal Kinetics in Complex Systems (Application to Biophysics and Biotechnology). Phys. A 2006, 368, 165-175. https://doi.org/10.1016/j.physa.2005.12.062
[17] Seixas, F.L.; Gimenes, M.L.; Fernandes-Machado, N.R.C. Treatment of Vinasse by Adsorption on Carbon from Sugar Cane Bagasse. Quím. Nova 2016, 39, 172-179. https://doi.org/10.5935/0100-4042.20160013
[18] Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordoñez, M.; Knox, C.; Llorach, R.; Eisner, R.; Cruz, J.; Neveu, V.; Wishart, D.; Manach, C. et al. Phenol-Explorer 2.0: A Major Update of the Phenol-Explorer Database Integrating Data on Polyphenol Metabolism and Pharmacokinetics in Humans and Experimental Animals. Database 2012, 2012, bas0341. https://doi.org/10.1093/database/bas031
[19] Rothwell, J.A.; Pérez-Jiménez, J.; Neveu, V.; Medina-Remón, A.; M'Hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S. et al. Phenol-Explorer 3.0: A Major Update of the Phenol-Explorer Database to Incorporate Data on the Effects of Food Processing on Polyphenol Content. Database 2013, 2013, bat070. https://doi.org/10.1093/database/bat070
[20] Rothwell, J.A.; Medina-Remon, A.; Perez-Jimenez, J.; Neveu, V.; Knaze, V.; Slimani, N.; Scalbert, A. Effects of Food Processing on Polyphenol Contents: A Systematic Analysis Using Phenol-Explorer Data. Mol. Nutr. Food Res. 2015, 59, 160-170. https://doi.org/10.1002/mnfr.201400494
[21] Brunauer, S.; Emmett, P.; Teller, E. In Introduction to Characterization and Testing of Catalysts; Anderson, J.R.; Pratt, K.C., Eds.; Academic Press: Sydney, 1985.
[22] Guillot, A.; Stoeckli, F. Reference Isotherm for High Pressure Adsorption of CO2 by Carbons at 273 K. Carbon 2001, 39, 2059-2064. https://doi.org/10.1016/S0008-6223(01)00022-7
[23] Barrett, E.P.; Joyner, L.G.; Halenda, P.P.J. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Am. Ceram. Soc. 1951, 73, 373-380. http://dx.doi.org/10.1021/ja01145a126
[24] Newcombe, G.; Drikas, M. Adsorption of NOM onto Activated Carbon: Electrostatic and Non-Electrostatic Effects. Carbon 1997, 35, 1239-1250. https://doi.org/10.1016/S0008-6223(97)00078-X
[25] Boehm, H.P. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon 1994, 32, 759-769. https://doi.org/10.1016/0008-6223(94)90031-0
[26] Faria, P.C.C.; Orfao, J.J.M.; Pereyra, M.F.R. Adsorption of Anionic and Cationic Dyes on Activated Carbons with Different Surface Chemistries. Water Res. 2004, 38, 2043-2052. https://doi.org/10.1016/j.watres.2004.01.034
[27] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Jean Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051-1069. https://doi.org/10.1515/pac-2014-1117
[28] Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D.A System of Classification of Solution Adsorption Isotherms, and its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids. J. Chem. Soc. 1960, 14, 3973-3993. https://doi.org/10.1039/jr9600003973
[29] Garcıa-Araya, J.F.; Beltran, F.J.; Alvarez, P.; Masa, F.J. Activated Carbon Adsorption of Some Phenolic Compounds Present in Agroindustrial Wastewater. Adsorption 2003, 9, 107-115. https://doi.org/10.1023/A:1024228708675
[30] Garg, D.; Kumar, S.; Sharma, K.; Majumder, C.B. Application of Waste Peanut Shells to Form Activated Carbon and its Utilization for the Removal of Acid Yellow 36 from Wastewater. Groundw. Sustain. Dev. 2019, 8, 512-519. https://doi.org/10.1016/j.gsd.2019.01.010
[31] Aljeboree, A.M.; Alshirifi, A.N.; Alkaim, A.F. Kinetics and Equilibrium Study for the Adsorption of Textile Dyes on Coconut Shell Activated Carbon. Arab. J. Chem. 2017, 10, S3381-S3393. https://doi.org/10.1016/j.arabjc.2014.01.020
[32] Namasivayam, C.; Kavitha, D. Adsorptive Removal of 2,4‐Dichlorophenol from Aqueous Solution by Low‐Cost Carbon from an Agricultural Solid Waste: Coconut Coir Pith. Sep. Sci. Technol. 2005, 39, 1407-1425. https://doi.org/10.1081/SS-120030490
[33] Bansal, R.C.; Goyal, M. Activated Carbon Adsorption. CRC Press: Boca Raton, 2005. https://doi.org/10.1201/9781420028812