Оxidative destruction of benzene in the conditions of unstationary cavitation excitation

2023;
: 38-44
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Institute of Chemical Technology, Mumbai, India
4
Lviv Polytechnic National University
5
Institute of Chemical Technology, Mumbai, India

The threshold value of the energy required for the decomposition of benzene after the cessation of cavitation has been established. The regularities of the oxidative destruction of benzene in the cyclic mode "cavitation-exposure" were established. The possibility of destruction of benzene in case of initiation of the process by introducing a certain amount of its cavitationally activated part into the water-benzene medium is shown. The role of oxygen in the cavitation decomposition of benzene was experimentally confirmed.

1. Rahman, W., Khan, M.D., Khan, M.Z., Halder, G. (2018). Anaerobic biodegradation of benzene-laden wastewater under mesophilic environment and simultaneous recovery of methane-rich biogas, Journal of Environmental Chemical Engineering. 6 (2). 2957-2964. doi.org/10.1016/j.jece.2018.04.038
https://doi.org/10.1016/j.jece.2018.04.038
2. Atashgahi, S., Hornung, B., Van Der Waals, M.J., Da Rocha, U.N., Hugenholtz, F., Nijsse, B., Molenaar, D., Van Spanning, R., Stams, A.J.M., Gerritse, J., Smidt, H. (2018). A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep. 8, 1-12. doi: 10.1038/s41598-018-22617-x
https://doi.org/10.1038/s41598-018-22617-x
3. Gomathi, Devi, L., Krishnaiah, G.M. (1999). Photocatalytic degradation of p-amino-azo-benzene and p-hydroxy-azo-benzene using various heat treated TiO2 as the photocatalyst. J. Photochem. Photobiol. A: Chem. 121. 141-145.
https://doi.org/10.1016/S1010-6030(98)00389-X
4. Yu, H., Ming, H., Zhang, H., Li., Pan, H.K., Liu, Y., Wang, F., Gong, J., Kang, Z. (2012). Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene. Mater. Chem. Phys. 137. 113-117. doi.org/10.1016/j.matchemphys.2012.02.076
https://doi.org/10.1016/j.matchemphys.2012.02.076
5. Zin, O., Sukhatskiy, Yu., Znak, Z., Lysenko, A.V. (2017). Cavitationdecompositionofbenzeneunderacousticradiationofultrasonicrange. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia. 868. 273-278.
6. Znak, Z.O., Sukhatskiy, Yu.V., Zin, O.I., Khomyak, S.V., Mnykh, R.V., Lysenko, A.V.. (2018). The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii, 1(116), 72-77.
7. Braeutigam, P., Wu, Z.L., Stark, A., Ondruschka, B. (2009). Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem. Eng. Technol. 32(5). 745-753. doi:10.1002/ceat.200800626
https://doi.org/10.1002/ceat.200800626
8. Dhanke, P.B., Wagh, S.M. (2020) . Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerg. Contam. 6. 20-32. doi: 10.1016/j.ultsonch.2022.106144
https://doi.org/10.1016/j.emcon.2019.12.001
9. Ramteke, L.P., Gogate, P.R. (2015).  Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes, J. Ind. Eng. Chem. 28. 247-260. doi.org/10.1016/j.jiec.2015.02.022
https://doi.org/10.1016/j.jiec.2015.02.022
10. Weschayanwiwat, P., Kunanupap, O., Scamehorn, J.F. (2008). Benzene removal from waste water using aqueous surfactant two-phase extraction with cationic and anionic surfactant mixtures, Chemosphere. 72.  1043-1048. DOI: 10.1016/j.chemosphere.2008.03.065
https://doi.org/10.1016/j.chemosphere.2008.03.065
11. Wu, Z., Lifka,  J., Ondruschka, B. (2004). Aquasonolysis of selected cyclic C6Hx hydrocarbons. Ultrason. Sonochem. 11. 187-190.  DOI: 10.1016/j.ultsonch.2004.01.028
https://doi.org/10.1016/j.ultsonch.2004.01.028
12. Thanekar, P., Gogate, P.R., Znak, Z., Sukhatskiy, Y., Mnykh, R. (2021). Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrasonics Sonochemistry,  70, 105296. doi.org/10.1016/j.ultsonch.2020.105296
https://doi.org/10.1016/j.ultsonch.2020.105296
13. Barik, A.J., Gogate, P.R. (2016). Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone, Ultrason. Sonochem. 30. 70-78. DOI: 10.1016/j.ultsonch.2015.11.007
https://doi.org/10.1016/j.ultsonch.2015.11.007
14. Goel, M., Hongqiang, H., Mujumdar, A.S., Ray, M.B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds - A comparative study. Water Res. 38. 4247-4261. DOI: 10.1016/j.watres.2004.08.008
https://doi.org/10.1016/j.watres.2004.08.008
15. Weavers, L.K., Ling, F.H., Hoffmann, M.R. (1998).  Aromatic compound degradation in water using a combination of sonolysis and ozonolysis, Environ. Sci. Technol. 32. 2727-2733. DOI
https://doi.org/10.1021/es970675a