The regularities of cavitation treatment of food and chemical industries wastewater from organic and biological contaminants in the presence of gases of different nature were studied. The optimal temperature range 313K - 318 K for cavitation wastewater treatment was established. It is shown that the process of cavitation destruction of organic compounds can be described by a first - order kinetic equation. The efficiency of gas bubbling in the cavitation zone in order to intensify the simultaneous destruction of microbiological and organic contaminants in industrial wastewater was confirmed.
1. Patil, P. N., Bote, S. D., Gogate, P. R. (2014). Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation. Ultrasonics Sonochemistry, 21(5), 1770-1777. DOI:10.1016/j.ultsonch.2014.02.02
https://doi.org/10.1016/j.ultsonch.2014.02.024
2. Saprykina, M., Samsoni-Todorov, A., Goncharuk, V. (2009). The decontamination effect of UV radiation with respect to micromycetes. Chimiya i tehnologiya vody, 31(5), 575.
https://doi.org/10.3103/S1063455X09050099
3. Chunli, Zheng., Ling, Zhao, Xiaobai, Zhou, Zhimin, Fu. Treatment technologies for organic wastewater. https://www.intechopen.com/.URL: https://www.intechopen.com/books/water.... http://dx.doi.org/10.5772/52665
https://doi.org/10.5772/52665
4. Mahvi, A., Dehghani, M. (2005). Evaluation of ultrasonic technology in removal of algae from surface waters. Pakistan Journal of Biological Sciences, 8(10). 1457-1459. DOI: 10.3923/pjbs.2005.1457.1459.
https://doi.org/10.3923/pjbs.2005.1457.1459
5. Kulkiy, L., Goronovskiy, I., Koganovskiy, A., Shevchenko, M. (1980). Spravochnic po svoystvam, metodam analiza i ochistke vody. Naukova dumka, Kyiv. 528.
6. Nykolskyi, B. P. (red.) (2012). Spravochnyk khymyka. 87-167.
7. Vashkurak, U., Shevchuk, L., Nykulyshyn, I., Aftanaziv, I. (2018). Research into effectiveness of cavitation cleaning of wastewater of a fat-and-oil plant from organic and biological contamination in the presence of various gases. Eastern-European Journal of Enterprise Technologies, 3/10(93), 51-58. DOI: https://doi.org/10.15587/1729-4061.2018.131953
https://doi.org/10.15587/1729-4061.2018.131953
8. Shevchuk, L., Strogan, O., Koval, I. (2012). Equipment for magnetic-cavity water disinfection. Chemistry and Chemical Technology, 6(2), 219-223.
https://doi.org/10.23939/chcht06.02.219
9. Shevchuk, L., Aftanaziv, I., Strohan, O., Predzymirska, L. (2014). Doslidzhennia vplyvu azotu na fektyvnist protsesu vibrokavitatsiinoi obrobky stokiv molokozavodu. Vostochno-evropeiskyi zhurnal peredovыkh tekhnolohyi, 3/6(69), 42-47.
10. Shevchuk, L., Starchevskii, V. (2014). Cavitaziya. Fizychni, himichni, biologichni ta tehnologichni aspecty. Lvivska politehnica, Lviv . 376.
11. Mason, T., Lorimer, P. (2002). Applied sonochemistry: uses of power ultrasound in chemistry. Wiley-VCH Verlag GmbH&Co.KGaA, Coventry university. 293.
https://doi.org/10.1002/352760054X
12. Wu, X., Joyce, E. M. J., Mason, T. J. M. (2012). Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. Water Res., 46(9), 2851-2858.
https://doi.org/10.1016/j.watres.2012.02.019
13. Marhulys, M. A. (1986). Zvukokhymycheskye reaktsyy y sonoliumynestsentsyia. Monohrafyia. M: Khymyia. 288.
14. Syrotiuk, M. H. (2008). Akustycheskaia kavytatsyia. Monohrafyia. M.Nauka.271.
15. Mason, T. (2003). Potential uses of ultrasound in the biological decontamination of water. Ultrason Sonochem., 10(6), 319-323. DOI: 10.1016/S1350-4177(03)00102-0
https://doi.org/10.1016/S1350-4177(03)00102-0
16. Laughrey, Z., Bear, E., Jones, R., Tarr, M. A. (2001). Aqueous sonolytic decomposition of polycyclic aromatic hydrocarbons in the presence of additional dissolved species. Ultrasonics Sonochemistry, 8(4), 353-357. DOI: 10.1016/s1350-4177(00)00080-8
https://doi.org/10.1016/S1350-4177(00)00080-8