Ukraine's transition to an energy-efficient economy as part of its overall transformation to EU standards is a difficult but crucial challenge. The country's post-war recovery will involve modernizing the entire infrastructure in line with EU sustainable development standards. In particular, the road sector, being the most resource-intensive in construction, must be in line with the goals of the European Green Deal, namely: reducing greenhouse gas emissions resulting from the extraction and processing of natural resources, implementing the principles of the circular economy, achieving economic growth by maximizing the substitution of natural materials for man-made waste, minimizing negative environmental impact and using advanced green technologies (Natsionalna ekonomichna stratehiia, 2021).
Promoting the principles of the circular economy and implementing the best European practices in the reuse of industrial waste is not only a requirement for Ukraine's successful accession to the EU, but also a prerequisite for the effective implementation of infrastructure projects, especially during the post-war reconstruction of the country. However, such ambitious goals can be a huge challenge for our country, particularly in environmental recycling projects in construction, where the most important issue is to eliminate the simplest and most attractive solution of using natural materials rather than replacing them with industrial waste.
The article contains research materials on solving the problem of utilization of phosphogypsum waste by using it in the structural layers of road pavements. For this purpose, composite mixtures based on raw dump phosphogypsum (SE "Sіrka", Novyi Rozdil) were prepared. Laboratory tests have established that composite materials based on phosphogypsum meet the requirements of the State Standard of Ukraine for structural layers of road pavement.
1. Abdullah, H. H., Shahin, M. A., Walske, M. L., & Karrech, A. (2021). Cyclic behaviour of clay stabilised with fly-ash based geopolymer incorporating ground granulated slag. Transportation Geotechnics, 26, 100430. doi: https://doi.org/10.1016/j.trgeo.2020.100430
https://doi.org/10.1016/j.trgeo.2020.100430
2. Acikök, F. (2018). Effect of fly ash and ground granulated blast furnace slag on the strength of concrete pavement. Journal of Sustainable Construction Materials and Technologies, 3(3), 278-285. doi: https://doi.org/10.29187/jscmt.2018.31
https://doi.org/10.29187/jscmt.2018.31
3. Arm, M. (2003). Mechanical properties of residues as unbound road materials-experimental tests on MSWI bottom ash, crushed concrete and blast furnace slag. Diss. Swedish Geotechnical Institute, Stockholm. Retrieved from https://www.diva-portal.org/smash/record.jsf?pid=diva2:1299982
4. Building materials. Phosphogyps Conditional for the production of gypsum binder and artificial gypsum stones, DSTU B V. 2.7-2-93 (1993).
5. Cánovas, C. R., Macías, F., Pérez-López, R., Basallote, M. D., & Millán-Becerro, R. (2018). Valorization of wastes from the fertilizer industry: Current status and future trends. Journal of Cleaner Production, 174, 678-690. doi: https://doi.org/10.1016/j.jclepro.2017.10.293
https://doi.org/10.1016/j.jclepro.2017.10.293
6. Cao, J., Wang, Z., Ma, X., Yang, X., Zhang, X., Pan, H., & Luo, H. (2022). Promoting coordinative development of phosphogypsum resources reuse through a novel integrated approach: A case study from China. Journal of Cleaner Production, 374, 134078. doi: https://doi.org/10.1016/j.jclepro.2022.134078
https://doi.org/10.1016/j.jclepro.2022.134078
7. Chaimaâ, D. A., Khaled, L., Amina, A., & Kamal, E. O. (2022). Moroccan Phosphogypsum Use in Road Engineering: Materials and Structure Optimization. Journal of Materials Science and Engineering A, 12(10-12), 115-130. doi: https://doi.org/10.17265/2161-6213/2022.10-12.002
https://doi.org/10.17265/2161-6213/2022.10-12.002
8. Chernysh, Yu., Yakhnenko, O., Chubur, V., & Rubik, H. (2021). Pererobka fosfohipsu: ohliad ekolohichnykh problem, suchasni tendentsii ta perspektyvy. Prykladni nauky, 11(4), 1575. doi: https://doi.org/10.3390/app11041575
https://doi.org/10.3390/app11041575
9. Crushed stone materials and gravel materials for the road building industry. Part 3. The Materials bound by the mineral binders,DSTU 9177-3:2022 (2022).
10. Dvorkin, L. (2019). Budivelni vyazhuchi materialy. Rivne: NUVHP. Retrieved from https://ep3.nuwm.edu.ua/19090/1/%D0%91%D0%A3%D0%94_%D0%92%D0%AF%D0%96%D0...
11. Dvorkin, L. Y., Dvorkin, O. L., Pushkarova, K. K., Kochevykh, M. O., Mokhort, M. A., & Bezsmertnyi, M. P. (2009). Vykorystannia tekhnohennykh produktiv u budivnytstvi: Navchalnyi posibnyk. Rivne: NUVHP.
12. International Fertilizer Industry Association. (2016). Phosphogypsum: Sustainable Management and Use. International Fertilizer Industry Association: Paris, France.
13. Ivashchenko, T. H., Bondar, O. I., Novoselska, L. P., & Vynnychenko, V. I. (2016). Fosfohyps (ekolohichno bezpechni shliakhy utylizatsii ta vykorystannia): Monohrafiia. Kherson: Oldi-plus
14. Kondratenko, N., & Shylovtseva, N. (2023). Realizatsiia pryntsypiv tsyrkuliarnoi ekonomiky u diialnosti mizhnarodnykh kompanii. Ekonomika ta suspilstvo, 49. doi: https://doi.org/10.32782/2524-0072/2023-49-28
https://doi.org/10.32782/2524-0072/2023-49-28
15. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., & Khrystyuk, A. (2016). Results of experimental studies of amber extraction by hydromechanical method in Ukraine. Eastern-European Journal of Enterprise Technologies, 3(10(81)), 24–28. doi: https://doi.org/10.15587/1729-4061.2016.72404
https://doi.org/10.15587/1729-4061.2016.72404
16. Marushchak, U., Sanytsky, M., Pozniak, O., & Mazurak, O. (2019). Peculiarities of nanomodified portland systems structure formation. Chemistry & Chemical Technology, 4(13), 510-517.https://doi.org/10.23939/chcht13.04.510
https://doi.org/10.23939/chcht13.04.510
17. Mozghovyi, V. V., Puhach, M. O., Mozghova, L. A., Kutsman, O. M., Chyzhenko, N. P., & Sokoliuk, M. Yu. (2014). Napriamky zastosuvannia zoloshlakiv TES u budivnytstvi avtomobilnykh dorih. Visnyk Natsionalnoho transportnoho universytetu, 29(1), 199-205. doi: http://nbuv.gov.ua/UJRN/Vntu_2014_29(1)__26.
18. Natsionalna ekonomichna stratehiia na period do 2030 roku: Postanova KM 2021, № 202 (2021).
19. Road Materials, Produced by cold recycling technology. Test methods, DSTU 8977:2020 (2020).
20. Smith, W., & Vorobieff, G. (2007). Recognition of sustainability by using stabilisation in road rehabilitation. In Proceedings of the Australasian (Iron and Steel) Slag Association Sustainability and Slag Conference. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.608.5300&rep=rep1&type=pdf
21. Tayibi, H., Choura, M., López, F. A., Alguacil, F. J., & López-Delgado, A. (2009). Environmental impact and management of phosphogypsum. Journal of environmental management, 90(8), 2377-2386. doi: https://doi.org/10.1016/j.jenvman.2009.03.007
https://doi.org/10.1016/j.jenvman.2009.03.007
22. Tsioka, M., & Voudrias, E. A. (2020). Comparison of alternative management methods for phosphogypsum waste using life cycle analysis. Journal of Cleaner Production, 266, 121386. doi: https://doi.org/10.1016/j.jclepro.2020.121386
https://doi.org/10.1016/j.jclepro.2020.121386
23. Yakhnenko, O. M., Chernysh, Ye. Yu., Pliatsuk, L. D., & Trunova, I. O. (2015). Samozarostannia vidvalu fosfohipsu yak pokaznyk rivnia tekhnohennoho navantazhennia na dovkillia. Ecological Safety and Balanced Use of Resources, 1(13), 110–119. Retrieved from https://ebzr.nung.edu.ua/index.php/ebzr/article/view/214
24. Yefimenko, A. S. (2021). Pidvyshchennia vodostiikosti hipsu polifraktsiinymy mineralnymy dobavkamy. Retrieved from http://lib.kart.edu.ua/handle/123456789/8225