An Approach to Improving Availability of Microservices for Cyber-Physical Systems

2024;
: pp. 16 - 23
1
Lviv Polytechnic National University
2
Lviv Politechnic National University
3
Institute of Solid State Physics, University of Latvia

The design of modern Cyber-Physical Systems (CPS) connects physical and digital realms from cloud systems to edge devices. Microservice architecture has been widely used for IT solutions and emerges as a promising approach for supporting CPS that are more efficient, adaptable, and interconnected. However, there is an increasing need to improve the availability, reliability, and resilience of microservice systems according to the needs. This paper summarizes the challenges and drawbacks of microservice architecture used for CPS. Then, the simplified microservice model has been created, initial properties have been defined, and an improvement plan has been presented. The microservice model’s availability has been improved using a novel approach with endpoint containerization. Then, the discussion and conclusions have been offered to explore the full potential of integrating the physical and digital realms.

  1. Tyagi A. K., N. Sreenath., (2021). Cyber physical systems: analyses, challenges and possible solutions, Internet of Things and Cyber-Physical Systems, vol. 1, pp. 22–33, DOI: 10.1016/j.iotcps.2021.12.002.
  2. Serôdio C., Mestre P., Cabral J., Gomes M., Branco F., (2024). Software and architecture orchestration for process control in Industry 4.0 enabled by cyber-physical systems technologies, Applied Sciences, vol. 14, p. 2160, DOI: 10.3390/app14052160.
  3. Pontarolli R. P., Bigheti J. A., De Sá L. B. R., Godoy E. P., (2023). Microservice-oriented architecture for Industry 4.0, Eng,      vol.      4,      no.      2,      pp. 1179–1197,      DOI: 10.3390/eng4020069.
  4. Mena M., Criado J., Iribarne L., Corral A., Chbeir R., Manolopoulos Y., (2023). Towards high-availability cy- ber-physical systems using a microservice architecture, Computing,   vol.   105,   no.   8,   pp. 1745–1768,   DOI: 10.1007/s00607-023-01165-x.
  5. Fritzsch J., et al., (2023). Adopting microservices and DevOps in the cyber‐physical systems domain: A rapid review and case study, Software: Practice and Experience, vol. 53, no. 3, pp. 790–810, DOI: 10.1002/spe.3169.
  6. Kniazhyk T., Muliarevych O., (2023). Cloud computing with resource allocation based on ant colony optimization, Advances  in  Cyber-Physical  Systems,  vol.  8,  no.  2, pp. 104–110, DOI: 10.23939/acps2023.02.104.
  7. Malik M. I., Ibrahim A., Hannay P., Sikos L. F., (2023). Developing resilient cyber-physical systems: a review of state-of-the-art malware detection approaches, gaps, and future directions, Computers, vol. 12, no. 4, p. 79. DOI: 10.3390/computers12040079.
  8. Chaplia O., Klym H., (2023). An approach for automatic self-recovery for a Node.js microservice in 2023 13th In- ternational Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, pp. 1–4. DOI: 10.1109/DESSERT61349.2023.10416461.
  9. Yin K., Du Q., (2020). On representing resilience require- ments of Microservice Architecture Systems, arXiv. DOI: 10.48550/arXiv.1909.13096
  10. Amaro R., Pereira R., Da Silva M. M., (2024). DevOps metrics and KPIs: a multivocal literature review, ACM Computing Surveys, vol. 56, no. 9, pp. 1–41. DOI: 10.1145/3652508.
  11. Boor M. V., Borst S. C., Van Leeuwaarden J. S. H., Muk- herjee D., (2022). Scalable load balancing in networked systems: a survey of recent advances, SIAM Review, vol. 64, no. 3, pp. 554–622. DOI: 10.1137/20M1323746.
  12. Bernal A., Cambronero M. E., Núñez A., Cañizares P. C., Valero V., (2022). Evaluating cloud interactions with costs and SLAs,” The Journal of Supercomputing, vol. 78, no. 6, pp. 7529–7555. DOI: 10.1007/s11227-021-04197-2.
  13. Aldalur I., Arrieta A., Agirre A., Sagardui G., Arratibel M., (2024). A microservice-based framework for multi-level testing of cyber-physical systems, Software Quality Jour- nal, vol. 32, no. 1, pp. 193–223. DOI: 10.1007/s11219- 023-09639-z.
  14. Islam Md. M., Bhuiyan Z. A., (2023). An Integrated scal- able framework for cloud and IoT based green healthcare system, IEEE Access, vol. 11, pp. 22266–22282, DOI: 10.1109/ACCESS.2023.3250849.
  15. Ward G., Janczewski L., (2022). Investigating data risk considerations in emergent cyber physical production sys- tems, Journal of Systemics, Cybernetics and Informatics, vol. 20, no. 2, pp. 51–62, DOI: 10.54808/JSCI.20.02.51.
  16. Naqvi M. A., Malik S., Astekin M., Moonen L., (2022). On evaluating self-adaptive and self-healing systems using chaos engineering, in 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS),     pp. 1–10. DOI: 10.1109/ACSOS55765.2022.00018.