Ant Colony Algorithm in Traffic Flow Control

2024;
: pp. 158 - 163
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University

The relevance of the research is determined by the need to optimize traffic light control at intersections to reduce congestion and delays and increase the capacity of intersections. A practical solution to this problem is using intelligent transport systems and specific decision-making subsystems. However, automating such tasks requires scientific research to develop effective algorithms suitable for practical use.

This work proposes an approach to optimizing traffic light control at intersections that considers the traffic flow parameters at a specific intersection and those at adjacent intersections, utilizing an ant colony optimization algorithm to optimize traffic light control at neighboring intersections.

The results obtained show that this approach is more effective compared to existing methods and has the potential to reduce delays by 10% and increase intersection capacity by 15% and more.

  1. Wu, J.; Cheng, L.; Chu, S.; Song, Y. (2024) An autonomous coverage path planning algorithm for maritime search and rescue of persons-in-water based on deep reinforcement learning. Ocean. Eng, 291, 116403. DOI: https://doi.org/10.1016/j.oceaneng.2023.116403
  2. Ma, Yue, Bo Li, Wentao Huang, and Qinqin Fan (2023) An Improved NSGA-II Based on Multi-Task Optimization for Multi-UAV Maritime Search and Rescue under Severe Weather. Journal of Marine Science and Engineering 11, no. 4: 781. DOI: https://doi.org/10.3390/jmse11040781
  3. Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S. (2021)  Coverage  path  planning  for  multiple  unmanned  aerial vehicles in maritime search and rescue operations. Comput.Ind. Eng, 161 DOI: https://doi.org/10.1016/j.cie.2021.107612
  4. Skinderowicz, R. (2022). Improving Ant Colony Optimization efficiency for solving large TSP instances. Appl.Soft Comput, 120 DOI: https://doi.org/10.1016/j.asoc.2022.108653
  5. Wang Y., Jiang Y., Wu Y., Yao Z. (2024). Mitigating traffic oscillation through control of connected automated vehicles: A cellular automata simulation, Expert Systems with Applications,                no.235, DOI: https://doi.org/10.1016/j.eswa.2023.121275
  6. Liu, Yuxin, Zihang Qin, and Jin Liu. 2023. "An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem  with  Simultaneous  Delivery  and Pickup" Mathematics 11,            no.           15:           3328. https://doi.org/10.3390/math11153328
  7. Sarbijan, M.S.; Behnamian, J. (2023). A mathematical model and metaheuristic approach to solve the real-time feeder vehicle routing problem. Comput. Ind. Eng, DOI: https://doi.org/10.1016/j.cie.2023.109684
  8. Wu, Y.; Cai, Y.; Fang, C. Evolutionary Multitasking for Bidirectional Adaptive Codec: A Case Study on Vehicle Routing Problem with Time Windows. Appl. Soft. Comput. 2023, 145, DOI: https://doi.org/10.1016/j.asoc.2023.110605
  9. Abu-Alsaad, H.A. (2023) Cnn-Based Smart Parking System. International Journal of Interactive Mobile Technologies (iJIM), 17,155-170. DOI:https://doi.org/10.3991/ijim.v17i11.37033
  10. P. -S. Shih, S. Liu and X. -H. Yu, "Ant Colony Optimization for Multi-phase Traffic Signal Control," 2022 IEEE 7th International Conference on Intelligent Transportation Engineering (ICITE), Beijing, China, 2022, pp. 517-521, DOI: 10.1109/ICITE56321.2022.10101431.
  11. Yao Z., Li L., Liao W., Wang Y. (2024). Optimal lane management policy for connected automated vehicles in mixed traffic flow, Physica A: Statistical Mechanics and its Applications,   no.637, DOI: https://doi.org/10.1016/j.physa.2024.129520
  12. Liu K., Feng T. (2023). Heterogeneous traffic flow cellular automata model mixed with intelligent controlled vehicles, Physica A: Statistical Mechanics and its Applications, no.632, DOI: https://doi.org/10.1016/j.physa.2023.129316
  13.  Yulianto, B. (2023). Adaptive Traffic Signal Control Using Fuzzy Logic Under Mixed Traffic Conditions. In: Kristiawan, S.A., Gan, B.S., Shahin, M., Sharma, A. (eds) Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering. ICRMCE 2021. Lecture Notes in Civil Engineering, vol 225. Springer, Singapore. DOI: https://doi.org/ 10.1007/978-981-16-9348-9_59
  14. Wang F., Tang K., Li K., Liu Z., Zhu L. (2019). A Group- Based Signal Timing Optimization Model Considering Safety for Signalized Intersections with Mixed Traffic Flows, Journal of Advanced Transportation, vol. 2019, DOI: https://doi.org/10.1155/2019/2747569
  15. Nguyen, Tri-Hai & Jung, Jason. (2021). Ant colony optimization-based traffic routing with intersection negotiation for connected vehicles. Applied Soft Computing. 112. 107828. 10.1016/j.asoc.2021.107828.
  16. Alkhatib A.A.A., Maria A. K., AlZu`bi S. (2022). Smart Traffic Scheduling for Crowded Cities Road Networks, Egyptian Informatics Journal, vol. 23(4), pp. 163–176. DOI: https://doi.org/10.1016/j.eij.2022.10.002
  17. Bo Liu, Zhentao Ding. (2022). A distributed deep reinforcement learning method for traffic light control. Neurocomputing. no.490, pp. 390–399 DOI: https://doi.org/10.1016/j.neucom.2021.11.106
  18. Hai D. T., Manh D.V., Nhat N.M. (2022). Genetic algorithm application for optimizing traffic signal timing reflecting vehicle emission intensity, Transport Problems, no.17(1), pp. 5–16 DOI: https://doi.org/10.20858/tp.2022.17.1.01
  19. Abdou A. A., Farrag H. M., and A. S. Tolba. (2022). A Fuzzy Logic-Based Smart Traffic Management Systems, Journal of Computer Science, no.18(11), pp.1085–1099 DOI: https://doi.org/10.3844/jcssp.2022.1085.1099
  20. Buzachis A., Celesti A., Galleta A., Fazio M., Fortino G., Villari M. (2020). A multi-agent autonomous intersection management (MA-AIM) system for smart cities leveraging edge-of-things and Blockchain. Information Sciences, no. 522, pp. 148–163. DOI: https://doi.org/10.1016/ j.ins.2020.02.059