PRODUCTION TECHNOLOGIES, MODERN RESEARCH, AND THE UKRAINIAN MARKET OF SOUR BEER AND BEER OF SPONTANEOUS FERMENTATION

2024;
: 146-152
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The article examines modern technologies of the production of sour beer and beer of spontaneous fermentation, microorganisms involved in the fermentation stage. The technologies and phases of fermentation of spontaneously fermented American Coolship Ale and Lambic are compared. The Ukrainian brewing market is analyzed for the production of sour beer and beer of spontaneous fermentation, the part of the involved breweries, and their productivity. The impact of beer production technology on the price and production of these beer types by breweries.

1.    Kong, Y., Wu, Q., Zhang, Y., & Xu, Y. (2014). In situ analysis of metabolic characteristics reveals the key yeast in the spontaneous and solid-state fermentation process of Chinese light-style liquor. Applied and Environmental Microbiology, 80(12), 3667-3676. DOI: https://doi.org/10.1128/AEM.04219-13

2.    Varela, C. (2016). The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Applied Microbiology and Biotechnology, 100, 9861-9874. DOI: https://doi.org/10.1007/s00253-016-7941-6

3.    Straka, D., & Hleba, L. (2022). Microbiological phases of spontaneously fermented beer. Journal of microbiology, biotechnology and food sciences, 12 (Special issue), e9624-e9624. DOI: https://doi.org/10.55251/jmbfs.9624

4.    Martusevice, P., Li, X., Hengel, M. J., Wang, S. C., & Fox, G. P. (2024). A Review of N-Heterocycles: Mousy Off-Flavor in Sour Beer. Journal of Agricultural and Food Chemistry, 72(14), 7618-7628. DOI: https://doi.org/10.1021/acs.jafc.3c09776

5.    Dysvik, A., La Rosa, S. L., De Rouck, G., Rukke, E. O., Westereng, B., & Wicklund, T. (2020). Microbial dynamics in traditional and modern sour beer production. Applied and environmental microbiology, 86(14), e00566-20. DOI: https://doi.org/10.1128/AEM.00566-20

6.    Kerr, E. D., Howes, M. T., & Schulz, B. L. (2024). Capturing and Characterising Wild Yeast for Beer Brewing. bioRxiv, 2024-02. DOI: https://doi.org/10.1101/2024.02.22.581081

7.    Lentz, M., Putzke, T., Hessler, R., & Luman, E. (2014). Genetic and physiological characterization of yeast isolated from ripe fruit and analysis of fermentation and brewing potential. Journal of the Institute of Brewing, 120(4), 559-564. DOI:10.1002/jib.154

8.    Osburn, K., Amaral, J., Metcalf, S. R., Nickens, D. M., Rogers, C. M., Sausen, C., & Bochman, M. L. (2018). Primary souring: A novel bacteria-free method for sour beer production. Food Microbiology, 70, 76-84. DOI: 10.1016/j.fm.2017.09.007

9.    Postigo, V., García, M., & Arroyo, T. (2023). Study of a first approach to the controlled fermentation for lambic beer production. Microorganisms, 11(7), 1681. DOI: https://doi.org/10.3390/microorganisms11071681

10.  Dysvik, A., Liland, K. H., Myhrer, K. S., Westereng, B., Rukke, E. O., De Rouck, G., & Wicklund, T. (2019). Pre‐fermentation with lactic acid bacteria in sour beer production. Journal of the Institute of Brewing, 125(3), 342-356. DOI:10.1002/jib.569

11.  Dysvik, A., La Rosa, S. L., Liland, K. H., Myhrer, K. S., Østlie, H. M., De Rouck, G., & Wicklund, T. (2020). Co-fermentation involving Saccharomyces cerevisiae and Lactobacillus species tolerant to brewing-related stress factors for controlled and rapid production of sour beer. Frontiers in microbiology, 11, 279. DOI: 10.3389/fmicb.2020.00279

12.  Estela‐Escalante, W. D., Rosales‐Mendoza, S., Moscosa‐Santillán, M., & González‐Ramírez, J. E. (2016). Evaluation of the fermentative potential of Candida zemplinina yeasts for craft beer fermentation. Journal of the Institute of Brewing, 122(3), 530-535. DOI: https://doi.org/10.1002/jib.354

13.  Bokulich, N. A., Bamforth, C. W., & Mills, D. A. (2012). Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PloS one, 7(4), e35507. DOI: https://doi.org/10.1371/journal.pone.0035507

14.  De Roos, J., Van Der Veken, D., & De Vuyst, L. (2019). The interior surfaces of wooden barrels are an additional microbial inoculation source for lambic beer production. Applied and Environmental Microbiology, 85(1), e02226-18. DOI: 10.1128/AEM.02226-18

15.  Spitaels, F., Wieme, A. D., Janssens, M., Aerts, M., Daniel, H. M., Van Landschoot, & Vandamme, P. (2014). The microbial diversity of traditional spontaneously fermented lambic beer. PloS one, 9(4), e95384. DOI: https://doi.org/10.1371/journal.pone.0095384

16.  Schifferdecker, A. J., Dashko, S., Ishchuk, O. P., & Piškur, J. (2014). The wine and beer yeast Dekkera bruxellensis. Yeast, 31(9), 323-332. DOI: 10.1002/yea.3023

17.  De Roos, J., Verce, M., Aerts, M., Vandamme, P., & De Vuyst, L. (2018). Temporal and spatial distribution of the acetic acid bacterium communities throughout the wooden casks used for the fermentation and maturation of lambic beer underlines their functional role. Applied and Environmental Microbiology, 84(7), e02846-17. DOI: 10.1128/AEM.02846-17

18.  Thompson Witrick, K., Duncan, S. E., Hurley, K. E., & O’Keefe, S. F. (2017). Acid and volatiles of commercially-available lambic beers. Beverages, 3(4), 51. DOI: https://doi.org/10.3390/beverages3040051

19.  Witrick, K., Pitts, E. R., & O’Keefe, S. F. (2020). Analysis of lambic beer volatiles during aging using gas chromatography–mass spectrometry (GCMS) and gas chromatography–olfactometry (GCO). Beverages, 6(2), 31. DOI: https://doi.org/10.3390/beverages6020031

20.  De Roos, J., & De Vuyst, L. (2019). Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. Journal of the Science of Food and Agriculture, 99(1), 25-38. DOI: 10.1002/jsfa.9291

21.  Spitaels, F., Wieme, A. D., Janssens, M., Aerts, M., Van Landschoot, A., De Vuyst, L., & Vandamme, P. (2015). The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced one and reveals a core microbiota for lambic beer fermentation. Food Microbiology, 49, 23-32. DOI: 10.1016/j.fm.2015.01.008

22.  De Roos, J., Verce, M., Weckx, S., & De Vuyst, L. (2020). Temporal shotgun metagenomics revealed the potential metabolic capabilities of specific microorganisms during lambic beer production. Frontiers in Microbiology, 11, 552978. DOI: https://doi.org/10.3389/fmicb.2020.01692

23.  Carriglio, J., Budner, D., & Thompson-Witrick, K. A. (2022). Comparison Review of the Production, Microbiology, and Sensory Profile of Lambic and American Coolship Ales. Fermentation, 8(11), 646. DOI: https://doi.org/10.3390/fermentation8110646

24.  Dysvik, A., La Rosa, S. L., Buffetto, F., Liland, K. H., Myhrer, K. S., Rukke, E. O., & Westereng, B. (2019). Secondary lactic acid bacteria fermentation with wood-derived xylooligosaccharides as a tool to expedite sour beer production. Journal of agricultural and food chemistry, 68(1), 301-314. DOI: 10.1021/acs.jafc.9b05459

25.  Rossi, S., Sileoni, V., Perretti, G., & Marconi, O. (2014). Characterization of the volatile profiles of beer using headspace solid‐phase microextraction and gas chromatography–mass spectrometry. Journal of the Science of Food and Agriculture, 94(5), 919-928. DOI: 10.1002/jsfa.6336