Comparison of the Quality of Imprints Obtained by Different Printing Technologies on Cardboard for the Production of Interactive Packaging

1
Lviv Polytechnic National University Institute of Printing Art and Media Technologies
2
Lviv Polytechnic National University Institute of Printing Art and Media Technologies
3
Lviv Polytechnic National University Institute of Printing Art and Media Technologies
4
Lviv Polytechnic National University Institute of Printing Art and Media Technologies

Interactive packaging represents a promising direction in the development of the packaging industry, enabling consumers to obtain significantly more information about products and their manufacturers, providing additional properties to goods, attracting consumer attention, and encouraging better interaction with information. Interactive packaging serves as an economically efficient method for analysing consumer behaviour, as manufacturers can receive feedback from customers for prompt problem resolution, quality improvement, and overall brand loyalty enhancement.
Due to their versatility and multifunctionality, QR codes have gained considerable popularity in recent years. These two­dimensional codes represent the next generation of barcodes, characterized by enhanced damage resistance and greater information storage capacity compared to standard one­dimensional codes. QR code scanning typically directs users to web pages or applications containing additional product information. Such bidimensional codes require high­quality printing to ensure reliable scanning and functionality, making the selection of appropriate printing technology crucial for successful implementation.
This study presents a comprehensive comparative analysis of print quality for offset, flexographic, inkjet, electrophotographic, and gravure printing technologies on coated cardboard. The research methodology involved systematic evaluation of optical density measurements, colour gamut coverage assessment, line blurring characteristics analysis, and line uniformity evaluation. Print samples were obtained using professional printing equipment representing each technology category, with electrophotographic printing tested using both dry toner and liquid ink systems.
The experimental investigation revealed significant variations in print quality cha­ racteristics across different printing technologies. The highest optical density values were achieved through electrophotographic printing with liquid ink technology. The widest colour gamut reproduction was observed in gravure and inkjet printing technologies. Minimal line blurring characteristics were documented in inkjet printing systems, while flexographic printing demonstrated superior line uniformity. Therefore, the selection of optimal printing technology depends on specific quality requirements and functional characteristics of interactive packaging applications.

  1. Nikonova, A. Iu., & Bokarieva, Yu. S. (2020). Tendentsii rozvytku interaktyvnykh pakovan [Trends in the development of interactive packaging]. In Molodizhna shkola-seminar PMW (pp. 107–109). KhNURE. https://openarchive.nure.ua/server/api/core/bitstreams/b57f40e1- 87fe-496e-b453-69e217b54129/content. [In Ukrainian].
  2. Havenko, M. M., Kotmalova, O. H., & Labetska, M. T. (2023). Vykorystannia interaktyvnykh tekhnolohii pid chas markuvannia farmatsevtychnykh pakovan [Use of interactive technologies during the labeling of pharmaceutical packaging]. Kvalilohiia knyhy, 1(43), 84–91. https:// doi.org/10.32403/2411-3611-2023-1-43-84-91. [In Ukrainian].
  3. Transparency Market Research. (n.d.). Interaktyvnyi rynok pakovannia [Interactive packaging market]. Retrieved from https://www.transparencymarketresearch.com/interactive-packaging- market.html. [In Ukrainian].
  4. Cierpiszewski, R. (2015). Opakowania inteligentne. Acta Poligraphica, 6, 9–18.
  5. QR Code Chimp. (n.d.). Yak vykorystovuvaty QR-kody dlia intelektualnoi upakovky? [How to use QR codes for smart packaging?]. Retrieved from https://uk.qrcodechimp.com/qr-codes- for-smart-packaging/. [In Ukrainian].
  6. Kipphan, H. (2001). Handbook of print media. Springer.
  7. Scarpeta, E. (2011). Fleksografia – praktyczny podręcznik.
  8. The Custom Boxes. (n.d.). Interactive packaging with QR codes is the smart future. Retrieved from https://www.thecustomboxes.com/blog/interactive-packaging-with-qr-codes-is-the-smart- future/.
  9. QR Code Chimp. (n.d.). Povnyi posibnyk iz druku ta publikatsii QR-kodiv [Complete guide to printing and publishing QR codes]. Retrieved from https://uk.qrcodechimp.com/qr-code- printing/. [In Ukrainian].
  10. Uniqode. (2021). QR code printing guidelines – The definitive guide. Retrieved from https:// www.uniqode.com/blog/qr-code-best-practices/qr-code-printing-guideline/.
  11. SmartBuysOnly.com. (n.d.). Gretag Macbeth SPM50 Densitometr Spektralfotometr Gre- tagMacbeth X-Rite. Retrieved from https://smartbuysonly.com/gretag-macbeth-spm50-den- sitometer-spectralfotometer-gretagmacbeth-x-rite/.
  12. International Organization for Standardization. (2013). Graphic technology — Process cont- rol for the production of half-tone colour separations, proof and production prints. Part 1: Parameters and measurement methods (ISO 12647-1:2013). Retrieved from https://www.iso. org/standard/57816.html.
  13. International Organization for Standardization & International Electrotechnical Commission. (2017). Information technology — Office equipment — Measurement of image quality attributes for hardcopy output — Monochrome text and graphic images (ISO/IEC 24790:2017). Retrieved from https://www.iso.org/ru/standard/69796.html.
  14. Wix.com. (n.d.). Wix.com. Retrieved from http://www.wix.com/.
  15. QRCode Monkey. (n.d.). QRCode Monkey. Retrieved from https://www.qrcode-monkey. com/.
  16. PackMage. (n.d.). PackMage 3.0 [Computer software]. Retrieved from https://download.cnet. com/packmage/3000-18496_4-75754978.html.