Obtaining Epoxidized Monoalkyl Oleates of C2-C4 Alcohols Based on Waste Cooking Oil Using Strongly Acidic Ion Exchange Resins

2025;
: pp. 229 - 241
1
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
2
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine
3
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of Ukraine
4
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

The current study is devoted to the synthesis of epoxidized monoalkyl oleates of linear and branched C2-C4 alcohols based on wasted cooking oil using commercially available brands of strong acidic ion-exchange resins (non-porous gel Amberlite IR120 and KU-2-8ChS and porous macroreticular Purolite CT275). The process aimed to obtain oleoepoxides as promising bio-based platforms for further chemical modification. At first, corresponding monoalkyl oleates were synthesized via transesterification or esterification. Epoxidation was carried out at 40-60 °C for 4 h using oleate : CH3COOH : H2O2 with a molar ratio of 1 : 0.4 : 2.0. Using 10-11% (dry basis) of sulfocationites provided 96-100 % conversion and >99% selectivity. Halving the sulfocationite load resulted in a significant decrease in conversion (83-86%) for non-porous samples, and the same conversion for porous samples (99 %). The composition of the obtained products (epoxidized oleate content is above 80%) was determined by gas chromatography; the chemical structure was confirmed by 1H and 13C NMR spectroscopy.

[1] Himri, Y.; Rehman, S.; Mostafaeipour, A.; Mellit, A.; Himri, S.; Namas, T. Worldwide Biomass Resources and Supply. In Encyclopedia of Renewable Energy, Sustainability and the Environment, Vol. 1; Elsevier, 2024; pp 475484. https://doi.org/10.1016/B978-0-323-93940-9.00146-8

[2] Ramli, A. N.  R. Agriculture Biomass Characterization and Exploitation. In Encyclopedia of Renewable Energy, Sustainability and the Environment, Vol. 1; Elsevier, 2024; pp 529–542. https://doi.org/10.1016/B978-0-323-93940-9.00067-0

[3] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Y.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521–531. https://doi.org/10.23939/chcht16.04.521

[4] Mandari, V.; Devarai, S. K. Biodiesel Production Using Homoge- neous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: A Critical Review. BioEnergy Res. 2022, 15, 935–961. https://doi.org/10.1007/s12155-021-10333-w

[5] Khodadadi, M. R.; Malpartida, I.; Tsang, C. W.; Lin, C. S. K.; Len, C. Recent Advances on the Catalytic Conversion of Waste Cooking Oil. Mol. Catal. 2020, 494, 111128. https://doi.org/10.1016/j.mcat.2020.111128

[6] Appiah, G.; Tulashie, S. K.; Akpari, E. E. A.; Rene, E. R.; Dodoo, D. Biolubricant Production via Esterification and Transesterification Processes: Current Updates and Perspectives. Int. J. Energy Res. 2022, 46, 3860–3890. https://doi.org/10.1002/er.7453

[7] Orjuela, A.; Clark, J. Green Chemicals from Used Cooking Oils: Trends, Challenges, and Opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 1–12. https://doi.org/10.1016/j.cogsc.2020.100369

[8] Papeikin, O.; Bodachivska, L.; Venger, I. Waste Food Oils as Components of Eco-Friendly Grease. Chem. Chem. Technol. 2023, 17, 431–437. https://doi.org/10.23939/chcht17

[9] Flach, B.; Lieberz, S.; Bolla, S. European Union: Biofuels Annual.Global Agricultural Information Network (GAIN), 2023.

[10] OECD Publishing, Agricultural Policy Monitoring and Evaluation 2023: Adapting Agriculture to Climate Change OECD, 2023. https://doi.org/10.1787/b14de474-en

[11] Moser, B. R.; Cermak, S. C.; Doll, K. M.; Kenar, J. A.; Sharma, B. K. A Review of Fatty Epoxide Ring Opening Reactions: Chemistry, Recent Advances, and Applications. J. Am. Oil Chem.Soc. 2022, 99, 801–842. https://doi.org/10.1002/aocs.12623

[12] Prileschajew, N. Oxydation Ungesättigter Verbindungen Mittels Organischer Superoxyde. Berichte der Dtsch. Chem. Gesellschaft. 1909, 42, 4811–4815. https://doi.org/10.1002/cber.190904204100

[13] Silbert, L. S.; Siegel, E.; Swern, D. Peroxides. IX. New Method for the Direct Preparation of Aromatic and Aliphatic Peroxy Acids. J. Org. Chem. 1962, 27, 1336–1342.https://doi.org/10.1021/jo01051a050

[14] Wai, P. T.; Jiang, P.; Shen, Y.; Zhang, P.; Gu, Q.; Leng, Y. Catalytic Developments in the Epoxidation of Vegetable Oils and the Analysis Methods of Epoxidized Products. RSC Adv. 2019, 9, 38119– 38136. https://doi.org/10.1039/C9RA05943A

[15] Monono, E. M.; Bahr, J. A.; Pryor, S. W.; Webster, D. C.; Wiesenborn, D. P. Optimizing Process Parameters of Epoxidized Sucrose Soyate Synthesis for Industrial Scale Production. Org. Process Res. Dev. 2015, 19, 1683–1692. https://doi.org/10.1021/acs.oprd.5b00251

[16] Saurabh, T.; Patnaik, M.; Bhagt, S. L.; Vilas R. Epoxidation of Vegetable Oils: A Review. Int. J. Adv. Eng. Technol. 2011, 2, 491–501.

[17] Jalil, M. J. Optimization of Epoxidation Palm-Based Oleic Acid To Produce Polyols. Chem. Chem. Technol. 2022, 16, 66–73. https://doi.org/10.23939/chcht16.01.066

[18] Kurańska, M.; Beneš, H.; Prociak, A.; Trhlíková, O.; Walterová, Z.; Stochlińska, W. Investigation of Epoxidation of Used Cooking Oils with Homogeneous and Heterogeneous Catalysts. J. Clean. Prod. 2019, 236, 117615. https://doi.org/10.1016/j.jclepro.2019.117615

[19] Mungroo, R.; Pradhan, N. C.; Goud, V. V .; Dalai, A. K. Epoxidation of Canola Oil with Hydrogen Peroxide Catalyzed by Acidic Ion Exchange Resin. J. Am. Oil Chem. Soc. 2008, 85, 887– 896. https://doi.org/10.1007/s11746-008-1277-z

[20] Campanella, A.; Baltanás, M. A. Degradation of the Oxirane Ring of Epoxidized Vegetable Oils with Solvated Acetic Acid Using Cation-exchange Resins. Eur. J. Lipid Sci. Technol. 2004, 106, 524– 530. https://doi.org/10.1002/ejlt.200400965

[21] Sinadinović-Fišer, S.; Janković, M.; Petrović, Z. S. Kinetics of in Situ Epoxidation of Soybean Oil in Bulk Catalyzed by Ion Exchange Resin. J. Am. Oil Chem. Soc. 2001, 78, 725–731. https://doi.org/10.1007/s11746-001-0333-9

[22] Gómez-de-Miranda-Jiménez-de-Aberasturi, O.; Perez-Arce, J. Efficient Epoxidation of Vegetable Oils through the Employment of Acidic Ion Exchange Resins. Can. J. Chem. Eng. 2019, 97, 1785– 1791. https://doi.org/10.1002/cjce.23429

[23] Turco, R.; Vitiello, R.; Russo, V.; Tesser, R.; Santacesaria, E.; Di Serio, M. Selective Epoxidation of Soybean Oil with Performic Acid Catalyzed by Acidic Ionic Exchange Resins. Green Process.Synth. 2013, 2, 427–434. https://doi.org/10.1515/gps-2013-0045

[24] Derahman, A.; Abidin, Z. Z.; Cardona, F.; Biak, D. R. A.; Tahir, P. M.; Abdan, K.; Liew, K. E. Epoxidation of Jatropha Methyl Esters via Acidic Ion Exchange Resin: Optimization and Characterization. J. Chem. Eng. 2019, 36, 959–968. https://doi.org/10.1590/0104- 6632.20190362s20180326

[25] Rios, L. A.; Echeverri, D. A.; Franco, A. Epoxidation of Jatropha Oil Using Heterogeneous Catalysts Suitable for the Prileschajew Reaction: Acidic Resins and Immobilized Lipase. Appl. Catal. A Gen. 2011, 394, 132–137. https://doi.org/10.1016/j.apcata.2010.12.033  [26] Konovalov, S.; Zubenko, S.; Patrylak, L.; Yakovenko, A.;

Povazhnyi, V.; Burlachenko, K. Revisiting the Synthesis of Fatty Acid Alkyl Esters of Lower Monohydric Alcohols by Homogeneous Base- Catalyzed Transesterification of Vegetable Oils. In Chemmotological Aspects of Sustainable Development of Transport; Springer, Cham, 2022; pp 49–80. https://doi.org/10.1007/978-3-031-06577-4_4

[27] Konovalov, S.; Patrylak, L.; Zubenko, S.; Okhrimenko, M.; Yakovenko, A.; Levterov, A. Alkali Synthesis of Fatty Acid Butyl and Ethyl Esters and Comparative Bench Motor Testing of Blended Fuels on Their Basis. Chem. Chem. Technol. 2021, 15, 105–117. https://doi.org/10.23939/chcht15.01.105

[28] Patrylak, L. K.; Zubenko, S. O.; Konovalov, S. V.; Povazhnyi, V. A. Alkaline Transesterification of Sunflower Oil Triglycerides by Butanol-1 over Potassium Hydroxide and Alkoxides Catalysts. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 5, 93–103. https://doi.org/10.32434/0321-4095-2019-126-5-93-103

[29] Zubenko, S. O. The Simple Method of Vegetable Oils and Oleochemical Products Acid Value Determination. Catal. Petrochem. 2021, 31, 69–74. https://doi.org/10.15407/kataliz2021.31.069

[30] Zubenko, S. O.; Konovalov, S. V; Patrylak, L. K.; Okhrimenko, M. V. Peculiarities of Potassium Butilate Preparation as a Catalyst for the Transesterification Process. Catal. Petrochem. 2017, 26, 36–39. http://nbuv.gov.ua/UJRN/KiN_2017_26_7

[31] Ionity. Kataloh; NIITEKhIM: Cherkasy, 1989.

[32] PurliteTM Product Data Sheet CT25. https://www.purolite.com/product-pdf/CT275.pdf

[33] LenntechTM Product Data Sheet Amberlitetm IR 120 H. https://www.lenntech.com/Data-sheets/Rohm-&-Haas-Amberlite-IR- 120-H-L.pdf

[34] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117