INFLUENCE OF TUNGSTEN COMPOUNDS ON REACTION OF 1-OCTENE EPOXIDATION BY TERT-BUTYL HYDROPEROXIDE AND HYDROPEROXIDE DECOMPOSITION

2021;
: 23-27
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

Catalytic ability of tungsten compounds in the reaction of hydroperoxide epoxidation of 1- octene and tert-butyl hydroperoxide decomposition was investigated. It is shown that the nature of ligand has significant effect on the catalytic activity of tungsten compounds in these reactions. It is established that boride and silicide of tungsten are the best choice for epoxidation reaction, whereas tungsten carbide exhibits poor activity. Tungsten boride is also the most active in the hydroxide decomposition reaction.

1. Yudin, A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley-VCH, Weinheim, Germany. doi: 10.1002/3527607862
https://doi.org/10.1002/3527607862
2. Marco-Contelles, J., Molina, M. T., Anjum, S. (2004). Naturally occurring cyclohexane epoxides: Sources, biological activities and synthesis. Chemical Reviews, 104(6), 2857-2899. doi: 10.1021/cr980013j
https://doi.org/10.1021/cr980013j
3. Emami M., Bikas R., Noshiranzadeh N., Kozakiewicz A., Lis T. (2020). Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of β-hydroxy-1,2,3-triazoles in water. ACS Omega, 5, 13344-13357. doi:  10.1021/acsomega.0c01491
https://doi.org/10.1021/acsomega.0c01491
4. Arends, I. W. C. E., Sheldon, R. A. (2001). Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A, 212(1-2), 175-187. doi: 10.1016/S0926-860X(00)00855-3
https://doi.org/10.1016/S0926-860X(00)00855-3
5. Xia, Q. H., Ge, H. Q., Ye, C. P., Liu, Z. M., Su K. X. (2005). Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chemical Reviews, 105(5), 1603-1662. doi: 10.1021/cr0406458
https://doi.org/10.1021/cr0406458
6. Wang X., You Q. , Wu Y., Bi C., Chen H., Dai C., Hao Q.,  Zhang J., Ma X. (2021) Tungsten-substituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 111028. doi: 10.1016/j.micromeso.2021.111028
https://doi.org/10.1016/j.micromeso.2021.111028
7. Zhang H., Yang X., Song X., Chang X., Jia M. (2020) Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277. doi: 10.1016/j.micromeso.2021.110277
https://doi.org/10.1016/j.micromeso.2020.110277
8. Kawashima H., Okuda Y., Kijima M., Fujitani T., Choi J.-C. (2020) Epoxidation of microalgal biomass-derived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 76(16), 131109. doi: 10.1016/j.tet.2020.131109  
https://doi.org/10.1016/j.tet.2020.131109
9. Vieira E.G., Filho N.L.D. (2017) Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 201(1), 262-270. doi: 10.1016/j.matchemphys.2017.08.045
https://doi.org/10.1016/j.matchemphys.2017.08.045
10. Bisio C., Gallo A., Psaro R, Tiozzo C., Guidotti M., Carniato F. (2019) Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133-142. doi: 10.1016/j.apcata.2019.05.027
https://doi.org/10.1016/j.apcata.2019.05.027
11. Milas N. A., Surgenor D. M. (1946). Studies in organic peroxides. VIII. t-Butyl hydroperoxide and di-t-butyl peroxide. Journal of the American Chemical Society, 68(2), 205-208. doi: 10.1021/ja01206a017 
https://doi.org/10.1021/ja01206a017