Oxidative CO2 Dehydrogenation of Butane on Microspherical Zeolite-Containing Composites Based on Ukrainian Kaolin

2025;
: pp. 455 - 462
1
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
2
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
3
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
4
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine

In the present study, zeolite-containing microspherical composites based on Ukrainian kaolin were synthesized and modified with ammonium, lanthanum, and zirconium compounds. The modified composites were dealuminated by thermal steaming. The obtained materials were characterized by various physical and chemical methods and tested in the reaction of oxidative dehydrogenation of butane with the participation of CO2. The influence of several factors on the characteristics of the synthesized samples and related changes in their activity and selectivity were analyzed. The results of the work showed the possibility of using such composites as catalysts for this reaction.

[1]     Ren, T.; Patel, M.; Blok, K. Olefins from Conventional and Heavy Feedstocks: Energy Use in Steam Cracking and Alternative Processes. Energy 2006, 31, 425–451. https://doi.org/10.1016/j.energy.2005.04.001

[2]     Bender, M. An Overview of Industrial Processes for the Production of Olefins – C4 Hydrocarbons. ChemBioEng Rev2014, 1, 136–147. https://doi.org/10.1002/cben.201400016

[3]     Cespi, D.; Passarini, F.; Vassura, I.; Cavani, F. Butadiene from Biomass, a Life Cycle Perspective to Address Sustainability in the Chemical Industry. Green Chem. 2016, 18, 1625–1638. https://doi.org/10.1039/C5GC02148K

[4]     Kyriienko, P. I.; Larina, O. V.; Soloviev, S. O.; Orlyk, S. M.; Calers, C.; Dzwigaj, S. Ethanol Conversion into 1,3- Butadiene by the Lebedev Method over MTaSiBEA Zeolites (M = Ag, Cu, Zn). ACS Sustainable Chem. Eng. 2017, 5, 2075–2083. https://doi.org/10.1021/acssuschemeng.6b01728

[5]     Larina, O. V.; Kurmach, M. M.; Kyriienko, P. I.; Alekseenko, L. M.; Shvets, O. V.; Soloviev, S. O. Influence of Acid–Base Characteristics of Hierarchical Cu/Zr-MTW Zeolites on Their Catalytic Properties in 1,3-Butadiene Production from Ethanol–Water Mixtures. Theor. Exp. Chem. 2021, 57, 343–350. https://doi.org/10.1007/s11237-021-09703-4

[6]     Kyriienko, P. I.; Larina, O. V.; Balakin, D. Yu.; Soloviev, S. O.; Orlyk, S. M. Influence of Copper and Silver on Catalytic Performance of MgO–SiO2 System for 1,3-Butadiene Production from Aqueous Ethanol. Catal. Lett. 2022, 152, 921–930. https://doi.org/10.1007/s10562-021-03704-7

[7]     Larina, O. V.; Zikrata, O. V.; Alekseenko, L. M.; Soloviev, S. O.; Orlyk, S. M. The Effect of Modification of Zn–Mg(Zr)Si Oxide Catalysts with Rare-Earth Elements (Y, La, Ce) in the Ethanol-to-1,3-Butadiene Process. Appl. Nanosci. 2023, 13, 7101– 7114. https://doi.org/10.1007/s13204-023-02876-5

[8]     Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613– 10653. https://doi.org/10.1021/cr5002436

[9]     Camacho-Bunquin, J.; Ferrandon, M. S.; Sohn, H.; Kropf, A. J.; Yang, C.; Wen, J.; Hackler, R. A.; Liu, C.; Celik, G.; Marshall, C. L.; Stair, P. C.; Delferro, M. Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of n-Butane to 1,3-Butadiene. ACS Catal. 2018, 8, 10058–10063. https://doi.org/10.1021/acscatal.8b02794

[10]  Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Schlögl, R.; Su, D. S. Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane. Science 2008, 322, 73–77. https://doi.org/10.1126/science.1161916

[11]  Coperet, C. C−H Bond Activation and Organometallic Intermediates on Isolated Metal Centers on Oxide Surfaces. Chem. Rev. 2010, 110, 656–680. https://doi.org/10.1021/cr900122p

[12]  Tanimu, G.; Aitani, A. M.; Asaoka, S.; Alasiri, H. Oxidative Dehydrogenation of N-Butane to Butadiene Catalyzed by New Mesoporous Mixed Oxides NiO-(Beta-Bi2O3)-Bi2SiO5/SBA-15 System. Mol. Catal. 2020, 488, 110893. https://doi.org/10.1016/j.mcat.2020.110893

[13]  BP. Statistical Review of World Energy 2021. BP p.l.c., 2021. https://www.bp.com/content/dam/bp/business- sites/en/global/corporate/pdfs/energy-economics/statistical- review/bp-stats-review-2021-full-report.pdf (accessed 2024-11-04).

[14]  Redkina, A.; Konovalova, N.; Kravchenko, N.; Strelko, V. Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation. Chem. Chem. Technol. 2022, 16, 259–266. https://doi.org/10.23939/chcht16.02.259

[15]  Fedevych, O. Study on Heterogeneous Catalytic Oxidative Dehydrogenation of Isopropylbenzene to α-Methylstyrene. Chem. Chem. Technol. 2022, 16, 507–514. https://doi.org/10.23939/chcht16.04.507

[16]  Murgia, V.; Torres, E.; Gottifredi, J.; Sham, E. Sol–Gel Synthesis of V2O5–SiO2 Catalyst in the Oxidative Dehydrogenation of n-Butane. Appl. Catal. A: Gen. 2006, 312, 134–143. https://doi.org/10.1016/j.apcata.2006.06.042

[17]  Gaspar, N. J.; Pasternak, I. S. H2S Promoted Oxidative Dehydrogenation of Ethane. Can. J. Chem. Eng. 1971, 49, 248– 251. https://doi.org/10.1002/cjce.5450490213

[18]  Jiang, X.; Sharma, L.; Fung, V.; Park, S. J.; Jones, C. W.; Sumpter, B. G.; Baltrusaitis, J.; Wu, Z. Oxidative Dehydrogenation of Propane to Propylene with Soft Oxidants via Heterogeneous Catalysis. ACS Catal. 2021, 11, 2182–2234. https://doi.org/10.1021/acscatal.0c03999

[19]  Pérez-Ramírez, J.; Gallardo-Llamas, A. Impact of the Preparation Method and Iron Impurities in Fe-ZSM-5 Zeolites for Propylene Production via Oxidative Dehydrogenation of Propane with N2O. Appl. Catal. A: Gen. 2005, 279, 117–123. https://doi.org/10.1016/j.apcata.2004.10.020

[20]  Dasireddy, V. D. B. C.; Huš, M.; Likozar, B. Effect of O2, CO2 and N2O on Ni–Mo/Al2O3 Catalyst Oxygen Mobility in n- Butane Activation and Conversion to 1,3-Butadiene. Catal. Sci. Technol. 2017, 7, 3291–3302. https://doi.org/10.1039/C7CY01033H

[21]  Gambo, Y.; Adamu, S.; Tanimu, G.; Abdullahi, I. M.; Lucky, R. A.; Ba-Shammakh, M. S.; Hossain, Mohammad. M. CO2-Mediated Oxidative Dehydrogenation of Light Alkanes to Olefins: Advances and Perspectives in Catalyst Design and Process Improvement. Appl. Catal. A: Gen. 2021, 623, 118273. https://doi.org/10.1016/j.apcata.2021.118273

[22]  Xie, Z.; Tian, D.; Xie, M.; Yang, S.-Z.; Xu, Y.; Rui, N.; Lee, J. H.; Senanayake, S. D.; Li, K.; Wang, H.; et al. Interfacial Active Sites for CO2 Assisted Selective Cleavage of C–C/C–H Bonds in Ethane. Chem 2020, 6, 2703–2716. https://doi.org/10.1016/j.chempr.2020.07.011

[23]  Volpe, M.; Tonetto, G.; De Lasa, H. Butane Dehydrogenation on Vanadium Supported Catalysts under Oxygen Free Atmosphere. Appl. Catal. A: Gen. 2004, 272, 69–78. https://doi.org/10.1016/j.apcata.2004.05.017

[24]  Michorczyk, P.; Zeńczak-Tomera, K.; Michorczyk, B.; Węgrzyniak, A.; Basta, M.; Millot, Y.; Valentin, L.; Dzwigaj, S. Effect of Dealumination on the Catalytic Performance of Cr- Containing Beta Zeolite in Carbon Dioxide Assisted Propane Dehydrogenation. J. CO2 Util. 2020, 36, 54–63. https://doi.org/10.1016/j.jcou.2019.09.018

[25]  Ajayi, B. P.; Rabindran Jermy, B.; Abussaud, B. A.; Al- Khattaf, S. Oxidative Dehydrogenation of n-Butane over Bimetallic Mesoporous and Microporous Zeolites with CO2 as Mild Oxidant. J. Porous Mater. 2013, 20, 1257–1270. https://doi.org/10.1007/s10934-013-9710-6

[26]  Mehdad, A.; Gould, N. S.; Xu, B.; Lobo, R. F. Effect of Steam and CO2 on Ethane Activation over Zn-ZSM-5. Catal. Sci. Technol. 2018, 8, 358–366. https://doi.org/10.1039/C7CY01850A

[27]  Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Y.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5- Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521–531. https://doi.org/10.23939/chcht16.04.521

[28]  Voloshyna, Y.; Pertko, O.; Povazhnyi, V.; Patrylak, L.; Yakovenko, A. Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons. Chem. Chem. Technol. 2023, 17, 373–385. https://doi.org/10.23939/chcht17.02.373

[29]  Saputra, E.; Budihardjo, M. A.; Bahri, S.; Pinem, J. A. Cobalt-Exchanged Natural Zeolite Catalysts for Catalytic Oxidation of Phenolic Contaminants in Aqueous Solutions. J. Water Process Eng. 2016, 12, 47–51. https://doi.org/10.1016/j.jwpe.2016.05.012

[30]  Inchaurrondo, N. S.; Font, J. Clay, Zeolite and Oxide Minerals: Natural Catalytic Materials for the Ozonation of Organic Pollutants. Molecules 2022, 27, 2151. https://doi.org/10.3390/molecules27072151

[31]  Abdulloh, A.; Rahmah, U.; Permana, A. J.; Mahdy, A. A.; Budiastanti, T. A.; Fahmi, M. Z. Cracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds. Chem. Chem. Technol. 2023, 17, 625–635. https://doi.org/10.23939/chcht17.03.625

[32]  Himpsl F.L. Method for Producing Cracking Catalyst. US4581341, April 8, 1986.

[33]  Álvarez, A.; Borges, M.; Corral‐Pérez, J. J.; Olcina, J. G.; Hu, L.; Cornu, D.; Huang, R.; Stoian, D.; Urakawa, A. CO2 Activation over Catalytic Surfaces. ChemPhysChem 2017, 18, 3135–3141. https://doi.org/10.1002/cphc.201700782