This study focuses on the formation of excited molecules and their significant role in influencing dynamic regimes of low-temperature oxidation, particularly in the context of methane and acetaldehyde reactions. The investigation reveals how quantum resonance facilitates the formation of excited formaldehyde molecules, driving energy transfer processes that influence radical chain reactions and inhibit oxidation. These processes lead to the formation of weak shock waves, which emerge due to the interaction of water complexes with negative halogen ions and the self-decomposition of ozone. Using theoretical modeling, computer simulations, and spectroscopy, the study uncovers the role of quantum resonance in generating weak shock waves and establishing oscillatory regimes. These findings contribute to a deeper understanding of the mechanisms of low-temperature oxidation and the complex interactions of excited molecules, offering new applications in both scientific research and industry.
[1] Garrod, R.T.; Jin, M.; Matis, K.A.; Jones, D.; Willis, E.R.; Herbst, E. Formation of Complex Organic Molecules in Hot Molecular Cores Through Nondiffusive Grain-Surface and Ice- Mantle Chemistry. Astrophys J Suppl Ser 2022, 259, 1. https://doi.org/10.3847/1538-4365/ac3131
[2] Klessinger, M.; Pötter, T. Properties of Molecules in Excited States. In Theoretical Models of Chemical Bonding: Part 3: Molecular Spectroscopy, Electronic Structure and Intramolecular Interactions; Maksić, Z.B., Ed.; Springer, 1991; pp. 521–544. https://doi.org/10.1007/978-3-642-58179-3_13
[3] Crim, F.F. Chemical Dynamics of Vibrationally Excited Molecules: Controlling Reactions in Gases and on Surfaces. Proc Natl Acad Sci U S A 2008, 105, 12654–12661. https://doi.org/10.1073/pnas.0803010105
[4] Westermayr, J.; Marquetand, P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021, 121, 9873–9926. https://doi.org/10.1021/acs.chemrev.0c00749
[5] Chen, Z.; Liu, Z.; Xu, X. Accurate Descriptions of Molecule-Surface Interactions in Electrocatalytic CO2 Reduction on the Copper Surfaces. Nat Commun 2023, 14, 936. https://doi.org/10.1038/s41467-023-36695-7
[6] Liao, W.; Kang, S.; Chu, Z.; Liu, Z.; Wang, Y.; Yang, B. Exploring the Low-Temperature Oxidation Chemistry with Ozone Addition in an RCM: A Case Study on Ethanol. Combust Flame 2022, 237, 111727. https://doi.org/10.1016/j.combustflame.2021.111727
[7] Lyubchik, S.; Lygina, E.; Lyubchyk, A.; Lyubchik, S.; Loureiro, J.M.; Fonseca, I.M.; Ribeiro, A.B.; Pinto, M.M.; Figueiredo, A.M.S. The Kinetic Parameters Evaluation for the Adsorption Processes at “Liquid–Solid” Interface. In Electrokinetics Across Disciplines and Continents; Ribeiro, A.; Mateus, E.; Couto, N., Eds; Springer, Cham., 2016; pp 81–109. https://doi.org/10.1007/978-3-319-20179-5_5
[8] Wang, H.; Dlugogorski, B.Z.; Kennedy, E.M. Coal Oxidation at Low Temperatures: Oxygen Consumption, Oxidation Products, Reaction Mechanism and Kinetic Modelling. Prog Energy Combust Sci 2003, 29, 487–513. https://doi.org/10.1016/s0360-1285(03)00042-x
[9] Rathnachalam, S. Excited-State Processes in Biomolecules; University of Groningen, 2022. https://doi.org/10.33612/diss.257112854
[10] Koval, Y.M.; Kutsova, V.Z.; Kovzel, M.A.; Shvets, P.Y. Features of structure formation, kinetics of phase transformations, mechanical and tribological properties of the Fe-based Cr–Mn–Ni alloys. Prog Phys Met 2020, 21(2), 180–248. https://doi.org/10.15407/ufm.21.02.180
[11] Liu, Y.; Hu, M.-G.; Nichols, M.A.; Grimes, D.D.; Karman, T.; Guo, H.; Ni, K.-K. Photo-Excitation of Long-Lived Transient Intermediates in Ultracold Reactions. Nat Phys 2020, 16, 1132–1136. https://doi.org/10.1038/s41567-020-0968-8
[12] Ibele, L.M.; Sánchez-Murcia, P.A.; Mai, S.; Nogueira, J.J.; González, L. Excimer Intermediates en Route to Long-Lived Charge-Transfer States in Single-Stranded Adenine DNA as Revealed by Nonadiabatic Dynamics. J Phys Chem Lett 2020, 11, 7483–7488. https://doi.org/10.1021/acs.jpclett.0c02193
[13] Sargsyan, G.; Silveistr, A.; Lysyi, M.; Mokliuk, M.; Sargsyan, H. The Appearance of Standing Wave Structures in the Reaction Medium during the Diffusion Development of the Chain Reaction Process. Scientific Herald of Uzhhorod University. Physics 2023, 54, 36–46. https://doi.org/10.54919/physics/54.2023.36
[14] Khardazi, S.; Zaitouni, H.; Neqali, A.; Lyubchyk, S.; Mezzane, D.; Amjoud, M.; Choukri, E.; Kutnjak, Z. Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method. J Phys Chem Sol 2023, 177, 111302. https://doi.org/10.1016/j.jpcs.2023.111302
[15] Dinzhos, R.V.; Privalko, E.G.; Privalko, V.P. Enthalpy Relaxation in the Cooling/Heating Cycles of Polyamide 6/ Organoclay Nanocomposites. I. Nonisothermal Crystallization. J Macromolec Sci Phys 2005, 44, 421–430. https://doi.org/10.1081/MB-200061610
[16] Doroshkevich, A.S.; Lyubchyk, A.I.; Shilo, A.V.; Zelenyak, T.Yu.; Glazunova, V.A.; Burhovetskiy, V.V.; Saprykina, A.V.; Holmurodov, Kh.T.; Nosolev, I.K.; Doroshkevich, V.S.; et al. Chemical-Electric Energy Conversion Effect in Zirconia Nanopowder Systems. J Surf Investig 2017, 11, 523–529. https://doi.org/10.1134/S1027451017030053
[17] Privalko, V.P.; Dinzhos, R.V.; Rekhteta, N.A.; Calleja, F.J.B. Structure-Diamagnetic Susceptibility Correlations in Regular Alternating Terpolymers of Ethene and Propene with Carbon Monoxide. J Macromolec Sci Phys 2003, 42, 929–938. https://doi.org/10.1081/MB-120023548
[18] Petrov, E.G.; Shevchenko, Y.V.; Gorbach, V.V.; Lyubchik, S.; Lyubchik, A. Features of Gate-Tunable and Photon- Field-Controlled Optoelectronic Processes in a Molecular Junction: Application to a ZnPc-Based Transistor. AIP Adv 2022, 12, 105020. https://doi.org/10.1063/5.0119257
[19] Prokopov, V.G.; Shvets, Y.I.; Fialko, N.M.; Meranova, N.O.; Korzhik, V.N.; Borisov, Y.S. Mathematical-Modeling of the Convective Heat-Transfer Processes During Formation of the Gas- Thermal Coating Layer. Dopovidi AN URSR 1989, 6, 71–76.
[20] Prokopov, V.G.; Fialko, N.M.; Sherenkovskaya, G.P.; Yurchuk, V.L.; Borisov, Y.S.; Murashov, A.P.; Korzhik, V.N. Effect of Coating Porosity on the Process of Heat-Transfer with Gas-Thermal Deposition. Pow Metall Met Ceram 1993, 32, 118–121. https://doi.org/10.1007/BF00560034
[21] Tanner, P.A.; Thor, W.; Zhang, Y.; Wong, K.-L. Energy Transfer Mechanism and Quantitative Modeling of Rate from an Antenna to a Lanthanide Ion. J Phys Chem A 2022, 126, 7418– 7431. https://doi.org/10.1021/acs.jpca.2c03965
[22] Witting, C. Photochemistry, Molecular. In Encyclopedia of Physical Science and Technology; Meyers, R.A., Ed.; Academic Press, 2003; pp. 29–47. https://doi.org/10.1016/B0-12- 227410-5/00563-9
[23] Stuhr, R.; Bayer, P.; von Wangelin, A.J. The Diverse Modes of Oxygen Reactivity in Life & Chemistry. ChemSusChem 2022, 15, e202201323. https://doi.org/10.1002/cssc.202201323
[24] Al‐ Nu’airat, J.; Oluwoye, I.; Zeinali, N.; Altarawneh, M.; Dlugogorski, B.Z. Review of Chemical Reactivity of Singlet Oxygen with Organic Fuels and Contaminants. Chem Rec 2020, 21, 315–342. https://doi.org/10.1002/tcr.202000143
[25] Lee, D.-G.; Isworo, Y.Y.; Park, K.-H.; Kim, G.-M.; Kim, S.-M.; Jeon, C.-H. Low-Temperature Oxidation Reactivity of Low-Rank Coals and Their Petrographic Properties. ACS Omega 2020, 5, 18594–18601. https://doi.org/10.1021/acsomega.0c00840
[26] May, V.; Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems; Wiley‐ VCH Verlag GmbH & Co. KGaA, 2011. https://doi.org/10.1002/9783527633791
[27] Sargsyan, G.N.; Evinyan, M.A.; Gukasyan, P.S.; Sargsyan, H.P. Modeling of Hydrocarbons and Hydrogen Oxidation in the Presence of Surface-Active Centers Water- Negative Halogen Ion in Terms of the Formation of Weak Shock Waves. J Contemp Phys 2022, 57, 297–302. https://doi.org/10.1134/S1068337222030148
[28] Cassani, A.; Monteverde, A.; Piumetti, M. Belousov- Zhabotinsky Type Reactions: The Non-Linear Behavior of Chemical Systems. J Math Chem 2021, 59, 792–826. https://doi.org/10.1007/s10910-021-01223-9
[29] Pribus, M.; Orlik, M.; Valent, I. From Classical Metal- Catalyzed Homogeneous Oscillators to an Uncatalyzed Version of the Belousov-Zhabotinsky Reaction: A Review. React Kinet Mech Catal 2022, 135, 1211–1260. https://doi.org/10.1007/s11144-021-02151-0
[30] Yuan, L.; Wang, H.; Meng, C.; Cheng, Z.; Lv, X.; Gao, Q. Multiple Iodide Autocatalysis Paths of Chemo-Hydrodynamical Patterns in the Briggs-Rauscher Reaction. Phys Chem Chem Phys 2023, 25, 13183–13188. https://doi.org/10.1039/d3cp00011g
[31] Zhou, Y.; Uddin, W.; Hu, G. Kinetic Identification of Three Metal Ions by Using a Briggs-Rauscher Oscillating System. Microchem J 2021, 160, 105617. https://doi.org/10.1016/j.microc.2020.105617
[32] Rizvi, S.T.R.; Seadawy, A.R.; Abbas, S.O.; Latif, S.; Althobaiti, S. Exact and Numerical Solutions to the System of the Chlorite Iodide Malonic Acid Chemical Reactions. Comput Appl Math 2021, 41, 13. https://doi.org/10.1007/s40314-021-01704-2
[33] Yang, C.; Su, F.; Xu, Y.; Ma, Y.; Tang, L.; Zhou, N.; Liang, E.; Wang, G.; Tang, J. pH Oscillator-Driven Jellyfish-Like Hydrogel Actuator with Dissipative Synergy Between Deformation and Fluorescence Color Change. ACS Macro Lett 2022, 11, 347–353. https://doi.org/10.1021/acsmacrolett.2c00002
[34] Gentili, P.L.; Baldinelli, L.; Bartolomei, B. Design of a New Photochromic Oscillator: Towards Dynamical Models of Pacemaker Neurons. React Kinet Mech Catal 2022, 135, 1281–1297. https://doi.org/10.1007/s11144-021-02122-5
[35] Jiménez, A.; Lu, Y.; Jambhekar, A.; Lahav, G. Principles, Mechanisms and Functions of Entrainment in Biological Oscillators. Interface Focus 2022, 12, 20210088. https://doi.org/10.1098/rsfs.2021.0088
[36] Zhang, W.; Li, W.; Song, Y.; Xu, Q.; Xu, H. Bacterial Detection Based on Förster Resonance Energy Transfer. Biosens Bioelectron 2024, 255, 116244. https://doi.org/10.1016/j.bios.2024.116244
[37] Zheng, S.-W.; Wang, H.; Wang, L.; Wang, H.-Y. Dexter‐ Type Exciton Transfer in Van Der Waals Heterostructures. Adv Funct Mater 2022, 32, 2201123. https://doi.org/10.1002/adfm.202201123
[38] Lindsey, J.S.; Taniguchi, M.; Bocian, D.F.; Holten, D. The Fluorescence Quantum Yield Parameter in Förster Resonance Energy Transfer (FRET) – Meaning, Misperception, and Molecular Design. Chem Phys Rev 2021, 2, 011302. https://doi.org/10.1063/5.0041132
[39] Zimmerman, I.H.; George, T.F. Quantum Resonance Effects in Electronic-To-Vibrational Energy Transfer in Molecular Collisions. J Chem Phys 1974, 61, 2468–2470. https://doi.org/10.1063/1.1682354
[40] Makido, O.; Khovanets’, G.; Kochubei, V.; Yevchuk, I. Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application. Chem Chem Technol 2022, 16, 227–236. https://doi.org/10.23939/chcht16.02.227 [41] Ali, S.H.; Mohammed, S.S.; Al-Dokheily, M.E.; Algharagholy, L. Photocatalytic Activity of Defective TiO2-x for Water Treatment/Methyl Orange Dye Degradation. Chem Chem Technol 2022, 16, 639–651. https://doi.org/10.23939/chcht16.04.639