Geospatial and Wavelet-Based Feature Fusion for Advanced RUL Forecasting in Agricultural Machinery

2025;
: pp. 184 - 190
1
Lviv Polytechnic National University, Department of Computerized Automatic Systems, Ukraine
2
Lviv Polytechnic National University, Ukraine

This study extends previous research on Remaining Useful Life (RUL) prediction for agricultural vehicles by utilizing an enriched dataset to overcome earlier limitations in forecasting RUL for electric and hydraulic system components. Influential features have been identified through Pearson correlation and Random Forest feature importance analysis. Discrete Wavelet Transform (DWT) has been applied to extract additional approximation and detail coefficients, enhancing the feature set. Prediction algorithms—LSTM, FCNN, and SVM—have been evaluated using Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²) metrics. Results indicate that LSTM models demonstrate superior performance, particularly those incorporating DWT- extracted features and geospatial factors such as weather and terrain conditions. The findings suggest that the developed RUL prediction models can be integrated into future Internet of Things (IoT) systems for remote monitoring and predictive maintenance of agricultural machinery.

[1] Marques, L. S., Ferraz, G. A. E. S., Moreira Neto, J., Magalhães, R. R., de Lima, D. A., Tsuchida, J. E., & Fuzatto, D. C. (2022). Agricultural machinery telemetry: A bibliometric analysis. AgriEngineering, 4(4), 939-950. DOI: https://doi.org/10.3390/agriengineering4040060

[2] Albahar, M. (2023). A survey on deep learning and its impact on agriculture: challenges and opportunities. Agriculture, 13(3),          540.  DOI:  https://doi.org/10.3390/ agriculture13030540

[3]    Dahab, M. H., Gafar, M. A., & Rahman, A. G. M. A. (2021). Repair and maintenance cost estimation for two power sizes of agricultural tractors as affected by hours of use and age in years: A case study, Dongola area, Sudan. Journal of engineering research and reports, 113-121.. DOI: https://doi.org/10.9734/jerr/2021/v20i1017395

[4] Shykhmat, A., & Veres, Z. (2024). Agriculture Vehicles Predictive Maintenance With Telemetry, Maintenance History and Geospatial Data. Advances in Cyber-Physical Systems, 9(2), 134-139. DOI: https://doi.org/10.23939/ acps2024.02.134

[5] Gugulothu, N., Tv, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017). Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073. DOI: https://doi.org/10.48550/arXiv.1709.01073

[6]    Jain, R., Rohit, M., Kumar, A., Bakliwal, A., Makwana, A., & Rahevar, M. (2022). Prediction of telemetry data using machine learning techniques. International Journal of Engineering Research & Technology, 11(9), 1-7. DOI: https://doi.org/10.17577/IJERTV11IS090048

[7] Mazaev, G., Crevecoeur, G., & Van Hoecke, S. (2021). Bayesian convolutional neural networks for remaining useful life prognostics of solenoid valves with uncertainty estimations. IEEE Transactions on Industrial Informatics, 17(12), 8418- 8428. DOI: https://doi.org/10.1109/TII.2021.3078193

[8] Guo, X., Zhao, Q., Zheng, D., Ning, Y., & Gao, Y. (2020). A short-term load forecasting model of multi-scale CNN-LSTM hybrid neural network considering the real-time electricity price. Energy     Reports, 6,              1046-1053. DOI: https://doi.org/10.1016/j.egyr.2020.11.078

[9] Spinelli, R., Eliasson, L., & Magagnotti, N. (2019). Determining the repair and maintenance cost of wood chippers. Biomass and Bioenergy, 122, 202-210. DOI: https://10.1016/j.biombioe.2019.01.024

[10] Bukhsh, Z. A., Saeed, A., Stipanovic, I., & Doree, A. G. (2019). Predictive maintenance using tree-based classification techniques: A case of railway switches. Transportation Research Part C: Emerging Technologies, 101, 35-54. DOI: https://doi.org/10.1016/j.trc.2019.02.001

[11] Xiao, M., Wang, W., Wang, K., Zhang, W., & Zhang, H. (2020). Fault Diagnosis of High-Power Tractor Engine Based on Competitive Multiswarm Cooperative Particle Swarm Optimizer Algorithm. Shock and Vibration, 2020(1), 8829257. DOI: https://doi.org/10.1155/2020/8829257

[12]  Liu, Y., Guan, L., Hou, C., Han, H., Liu, Z., Sun, Y., & Zheng, M. (2019). Wind power short-term prediction based on LSTM and discrete wavelet transform. Applied Sciences, 9(6), 1108. DOI: https://doi.org/10.3390/app9061108

[13] Wang, Y., Pan, R., Yang, D., Tang, X., & Chen, Z. (2017). Remaining useful life prediction of lithium-ion battery based on discrete wavelet transform. Energy Procedia, 105, 2053- 2058. DOI: https://doi.org/10.1016/j.egypro.2017.03.582

[14] Sharif, I., & Khare, S. (2014). Comparative analysis of Haar and Daubechies wavelet for hyper spectral image classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 937-941. DOI: https://doi.org/10.5194/ isprsarchives-XL-8-937-2014