THE INFLUENCE OF THE SUPPORT NATURE ON THE EFFICIENCY OF B-P-W-V-Ox CATALYST OF ACRYLIC ACID SYNTHESIS BY ALDOL CONDENSATION OF ACETIC ACID WITH FORMALDEHYDE

2019;
: 110-114
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

Due to the low efficiency of known catalysts of aldol condensation of acetic acid with formaldehyde, studies aimed at creating new or improving existing catalysts of this process are relevant. Creation of active and selective condensation catalysts will facilitate the industrial introduction of acrylic acid production by means of aldol condensation.

It is known that acid-type catalysts provide a satisfactory conversion of the reagents, but their use is accompanied by the formation of a significant amount of by-products. For solving this problem, processes were studied using supports of different nature.

In this paper, the catalytic systems of the composition B-P-W-V-Ox are deposited on a support of different nature in the process of acrylic acid production by aldol condensation of acetic acid with formaldehyde in the gas phase. For research purposes mesoporous supports were used: SiO2, SiO2 HTT 150 °C 3 h, Al2O3 MchT H2O 300 rpm, TiO2 anatase with TiO(OH)2 MchT H2O 300 rpm and Sn(OH)4 - TiO2 MchT 600 rpm. The atomic ratio of components in catalyst B:P:V:W is 3:1:0.18:0.12. The catalytic activity of the developed catalysts was investigated in a flow reactor with a stationary bed of a constant mass catalyst, located on a fixed grid. The composition of the reaction products was determined by the chromatographic method.

The influence of temperature on the activity and selectivity of the catalysts in the process of aldol condensation of acetic acid with formaldehyde to acrylic acid was studied. It has been established that the most efficient in the process of acrylic acid production is the catalytic system B-P-V-W-Ox/TiO2 anatase from TiO(OH)2 MchT H2O 300 rpm. The optimum conditions for this process are 375 °С. In these conditions on the optimum B–P–V–W–Oх/TiO2 anatase catalyst the conversion of acetic acid is 63.8 %, the selectivity of acrylic acid is 92 % and the yield of acrylic acid is 58.8 %.

It is shown that a significant difference in the catalytic properties of B-P-V-W-Ox catalysts deposited on different supports allows us to conclude that the nature of the support has a significant influence on the catalytic properties of the catalysts of acrylic acid production by the aldol condensation of acetic acid with formaldehyde.

1. Felice, K. M., Emerson, A. W. (2015). Clear coatings acrylic coatings. U. S. Patent No 8940401.
2. Shpyrka, I. I., Nebesnyi, R. V., Pikh, Z. G., Sydorchuk, V. V., Khalameida, S. V., Tsymbalista, O. V., Khoma. K. R. (2018). Acrylic acid obtaining by aldol condensation of acetic acid with formaldehyde in the presence of B-P-W-V-OX catalysts on mesoporous carrier. Scientific Bulletin of UNFU, 28(6), 89-92.
https://doi.org/10.15421/40280617
3. Nagaki D., Pan T., Peterson G. J., Bowden E., Chapman J. T., Muiller S. (2013). Catalyst for producing acrylic acid and acrylates. Patent No 20130245312.
4. Jin G., Weng W., Lin Z., Dummer N. F., Taylor S. H., Kiely C. J., Bartley J. K., Hutchings G. J. (2012). Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis,. 296, 55-64.
https://doi.org/10.1016/j.jcat.2012.09.001
5. Brueggemann, T. C., Woerz, N. T., Ruppel A. (2016). Process for preparing acrylic acid from formaldehyde and acetic acid. U. S. Patent No 9771314.
6. Schneider, R. A. (1979). Synthesis of acrylic acids and its esters. U. S. Patent No 4165438.
7. Bailey O. H., Montag R. A., Yoo J. S. Methacrylic acid synthesis: I. Condensation of propionic acid with formaldehyde over alkali metal cation on silica catalysts. Applied Catalysis A: General. 1992. Vol. 88, Issue 2. P. 163-177.
https://doi.org/10.1016/0926-860X(92)80213-V
8. Yoo J. S. Silica supported metal-doped cesium ion catalyst for methacrylic acid synthesis via condensation of propionic acid with formaldehyde. Applied Catalysis A: General. 1993. Vol. 102, Issue 2. P. 215-232.
https://doi.org/10.1016/0926-860X(93)80230-N
9. Patent 4677225 US. Process for the production of acrylic acid or methacrylic acid / Hiroshi Niizuma, Toshiro Miki, Shiro Kojima and others; assignee: Toagosei Chemical Industry Co., Ltd. (Tokyo, JP). - No. 736621; filing date: 21.05.1985; publication date: 30.06.1987.
10. Ai M., Fujihashi H., Hosoi S., Yoshida A (2003). Production of methacrylic acid by vapor-phase aldol condensation of propionic acid with formaldehyde over silica-supported metal phosphate catalysts. Applied Catalysis A: General, 252(1), 185-191.
https://doi.org/10.1016/S0926-860X(03)00449-6
11. Nebesnyi, R., Ivasiv, V., Dmytruk, Y., Lapychak, N. (2013). Acrylic acid obtaining by acetic acid catalytic condensation with formaldehyde. Eastern-European Journal of Enterprise Technologies, 6/6(66), 40-42.
https://doi.org/10.15587/1729-4061.2013.19130
12. Небесний, Р. В., Піх, З. Г., Івасів, В. В., Сидорчук, В. В., Шпирка, І. І., Лапичак, Н. І. (2016). Підвищення ефективності B2O3-P2O5-WO3-V2O5/SiO2 каталізатора процесу альдольної конденсації оцтової кислоти з формальдегідом шляхом гідротермальної обробки носія. Вісник Національного університету "Львівська політехніка". Хімія, технологія речовин та їх застосування, 84, 113-118.
13. Skubiszewska-Zieba, J., Khalameida, S., Sydorchuk. V. (2016). Comparison of surface properties of silica xero- and hydrogels hydrothermally modified using mechanochemical, microwave and classical methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 139-153.
https://doi.org/10.1016/j.colsurfa.2016.05.066