HYDROCHEMICAL SYNTHESIS AND PROPERTIES OF MERCURY(II) SULFIDE AND MERCURY(II) SELENIDE FILMS. REVIEW

2018;
: 3-13
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Due to its unique optical and electrical properties of chalcogenides of zinc subgroup metals semiconductor thin films can be used in photovoltaic systems. The largest usage is acquired by CdS films. But due to its toxicity, there is considerable interest in replacing CdS with other semiconductor films with similar or even better properties obtained by chemical bath deposition (CBD). One of the candidates for replacing cadmium sulfide is chemically deposited mercury (II) chalcogenides films.

In this paper were reviewed and analyzed the main aspects of mercury (II) sulfide and mercury (II) selenide thin films synthesis by CBD. Attention is focused on choosing a method of chemical deposition due to the simplicity of its execution in technological term, possibility of the using different initial substances for the synthesis wide range of semiconductor thin films at temperatures up to 100ºC.

The basic synthesis conditions of mercury (II) chalcogenides thin films were analyzed. Examined their impact on the phase composition, optical and morphological properties of the films. In the majority of synthesis methods as a substrate serves glass or it’s different modifications: glass/SnO2, glass/MeS (where Ме – Pb, Cd, Zn), glass/ІТО and in some cases – polymers (polyester, plexiglas), Ті. The temperature of the working solution ranged from 5°C to 90°C. The film thickness directly proportional to the deposition time and is highly depend on the nature of the substrate and pre-processing. Conditions for obtaining and properties of mercury (II) sulfide and mercury (II) selenide thin films are consolidated in table.

In most of the works, the choice of the synthesis initial parameters is not argued, in the studies themselves did not observe a clear system. Also, no information about the studies of the influence of mercury (II) salt and the complexing reagents nature, systematization of the influence dependences of each individual factor on the physical and chemical properties of the HgS and HgSe films were found.

That is why, studies in this direction are necessary for a comprehensive understanding of the various factors influence on the HgS and HgSe films properties, the possibility of their synthesis with the necessary functional properties for the development of new thin-film semiconductor materials and for the improvement of already developed materials on their base.

Due to its unique optical and electrical properties of chalcogenides of zinc subgroup metals semiconductor thin films can be used in photovoltaic systems. The largest usage is acquired by CdS films. But due to its toxicity, there is considerable interest in replacing CdS with other semiconductor films with similar or even better properties obtained by chemical bath deposition (CBD). One of the candidates for replacing cadmium sulfide is chemically deposited mercury (II) chalcogenides films.

In this paper were reviewed and analyzed the main aspects of mercury (II) sulfide and mercury (II) selenide thin films synthesis by CBD. Attention is focused on choosing a method of chemical deposition due to the simplicity of its execution in technological term, possibility of the using different initial substances for the synthesis wide range of semiconductor thin films at temperatures up to 100ºC.

The basic synthesis conditions of mercury (II) chalcogenides thin films were analyzed. Examined their impact on the phase composition, optical and morphological properties of the films. In the majority of synthesis methods as a substrate serves glass or it’s different modifications: glass/SnO2, glass/MeS (where Ме – Pb, Cd, Zn), glass/ІТО and in some cases – polymers (polyester, plexiglas), Ті. The temperature of the working solution ranged from 5°C to 90°C. The film thickness directly proportional to the deposition time and is highly depend on the nature of the substrate and pre-processing. Conditions for obtaining and properties of mercury (II) sulfide and mercury (II) selenide thin films are consolidated in table.

In most of the works, the choice of the synthesis initial parameters is not argued, in the studies themselves did not observe a clear system. Also, no information about the studies of the influence of mercury (II) salt and the complexing reagents nature, systematization of the influence dependences of each individual factor on the physical and chemical properties of the HgS and HgSe films were found.

That is why, studies in this direction are necessary for a comprehensive understanding of the various factors influence on the HgS and HgSe films properties, the possibility of their synthesis with the necessary functional properties for the development of new thin-film semiconductor materials and for the improvement of already developed materials on their base.

1. Sharma R. C. The Hg-S (Mercury-Sulfur) system / R. C. Sharma, Y. A. Chang, C. Guminski //
Journal of Phase Equilibria. – 1993. – Vol. 14(1). – P. 100–109. 2. Sharma R. C. The Hg-Se (Mercury12
Selenium) system / R. C. Sharma, Y. A. Chang, C. Guminski // Journal of Phase Equilibria. – 1992. –
Vol. 13(6). – P. 663–671. 3. Pawar A. R. Electrical transport and spectral response of HgZnS thin films /
A. R. Pawar, D. R. Kendre, V. B. Pujari // IJAEEE. – 2013. – Vol. 2(1). – P. 68–73. 4. Pawar A. R.
Structural and microscopic studies on mercury zinc sulfide thin films / A. R. Pawar, D. R. Kendre, V. B. Pujari //
Journal of Shivaji University. – 2015. – Vol. 41. (2). – 3 p. 5. McCann J. F. Chemical deposition of Cd1-xHgxS
thin film electrodus for liquid-junction solar cell / J. F. McCann, R. C. Kainthla // Solar Energy Materials. –
1983. – Vol. 9. – P. 247–251 . 6. Garadkar K. M. Effect of indium doping on structural, optical and
electrical properties of Cd0. 95Hg0. 05S thin films / K. M. Garadkar, P. P. Hankare, P. K. Patil // Materials
Chemistry and Physics. – 1999. – Vol. 58. – P. 64–70. 7. Skyllas-Kazacos M. Chemically deposited alloy
semiconductor thin films / M. Skyllas-Kazacos, J. F. McCann, R. Arruzza // Applications of Surface
Science. – 1985. – Vol. 22/23. – P. 1091–1097. 8. Deshmukh L. P. Studies on solution grown HgхCd1-хS
thin films / L. P. Deshmukh, K. M. Garadkar, D. S. Sutrave // Materials Chemistry and Physiсs. – 1998. –
Vol. 55. – P. 30–35. 9. Sharma N. C. Solution growth of variable gap Pbl-xHgxS films for infrared detectors /
N. C. Sharma, D. K. Pandya, H. K. Sehgal, K. L. Chopra // Mat. Res. Bull. – 1976. – Vol. 11. –
P. 1109–1114. 10. Jain M. Band-gap variation in ternary alloy films / M. Jain // Philosophical Magazine
Letters. – 1988. – Vol. 58(1). – P. 59–62. 11. Chattarki A. N. Synthesis, structure and spectro-microscopic
studies of polycrystalline HgxPb1-xS thin films grown by a chemical route / A. N. Chattarki, N. N. Maldar, L.
P. Deshmukh // Journal of Alloys and Compounds. – 2014. – Vol. 597. – P. 223–229. 12. Dappadwad U. R.
Synthesis and characteriza-tion of Zn0. 5Hg0. 5Se thin films / U. R. Dappadwad, M. K. Lande, S. G. Chonde,
B. R. Arbad, P. P. Hankare, V. M. Bhuse // Materials Chemistry and Physics. – 2008. – Vol. 112. –
P. 941–944. 13. Bhuse V. M. Chemical bath deposition of Hg doped CdSe thin films and their
characterization / V. M. Bhuse // Materials Chemistry and Physics. – 2005. – Vol. 91. – P. 60–66.
14. Hankare P. P. CdHgSe thin films: preparation, characterization and optoelectronic studies / P. P. Hankare,
V. M. Bhuse, K. M. Garadkar, S. D. Delekar, P. R. Bhagat // Semicond. Sci. Technol. – 2004. –
Vol. 19. – P. 277–284 (DOI: 10. 1088/0268-1242/19/2/027). 15. Bhuse V. M. Photo-electrochemical
properties of Cd1−xHgxSe thin films / V. M. Bhuse // Materials Chemistry and Physics. – 2007. – Vol. 106. –
P. 250–255. 16. Bhuse V. M. Structural, optical, electrical and photo-electrochemical studies on indium
doped Cd0. 6Hg0. 4Se thin films / V. M. Bhuse. P. P. Hankare, S. Sonandkar // Materials Chemistry and
Physics. – 2007. – Vol. 101. – P. 303–309. 17. Pujari V. B. Chemically synthesized (Cd,Hg)Se
pseudobinaries: some characteristic properties / V. B. Pujari, V. B. Gaikwad, E. U. Masumdar,
P. D. More, L. P. Deshmukh // Turk. J. Phys. – 2002. – 26. – P. 407–413. 18. Siemsen K. J. Preparation
and optical properties of evaporated β-HgS films / K. J. Siemsen, H. D. Riccius // Phys. stat. sol. – 1970. –
Vol. 37. – P. 445–451. 19. Nakada T. Optical absorption and dispersion in rf-sputtered α-HgS films /
T. Nakada // Journal of Applied Physics. – 1975. – Vol. 46(11). – P. 4857–4861 (doi: 10. 1063/1. 321519).
20. Herbert K. CdxHg1-хTe films by cathodic sputtering / K. Herbert, G. P. Sidney, P. S. James //
J. Electrochem. Soc. : Solid State Science. – 1967. – Vol. 114(6). – P. 616–619. 21. Nakada T. Growth and
properties of sputter-deposited α-HgS films in Hg vapor / T. Nakada, A. Kunioka // Japanese journal of
applied physics. – 1980. – Vol. 19(5) – P. 845–848. 22. Reynolds R. A. The II-VI compounds: 30 years of
history and the potential for the next 30 years / R. A. Reynolds // Journal of Vacuum Science & Technology A. –
1989. – Vol. 7. – P. 269–270. 23. Gichuhi A. Electrosynthesized CdS/HgS Heterojunctions / A. Gichuhi,
B. Edward Boone, C. Shannon // Langmuir. – 1999. – Vol. 15. – P. 763–766. 24. Patel B. K. HgS
nanoparticles: structure and optical properties / B. K. Patel, S. Rath, S. N. Sarangi, S. N. Sahu // Applied
Physics A. – 2007. – Vol. 86. – P. 447–450. (DOI: 10. 1007/s00339-006-3812-9). 25. Mahalingam T.
Electrodeposition and characterization of HgSe thin films / T. Mahalingam, A. Kathalingam,
C. Sanjeeviraja, R. Chandramohan, J. P. Chu, Y. D. Kim, S. Velumani // Materials Characterization. –
2007. – Vol. 58. – P. 735–739. 26. Caveney R. J. Epitaxial growth of II-VI compounds / R. J. Caveney //
Journal of Crystal Growth. – 1968. – Vol. 2. – P. 85–90. 27. Jung Y. C. Ammonium sulfide treatment of
HgCdTe substrate and its effects on electrical properties of ZnS/HgCdTe heterostructure / Y. C. Jung,
S. Y. An, S. H. Suh, D. K. Choi, J. S. Kim // Thin Solid Films. – 2005. – Vol. 483. – P. 407–410. 26. Suh S. H.
Control of hillock formation during MOVPE growth of HgCdTe by suppressing the pre-reaction of the Cd
precursor with Hg / S. H. Suh, J. S. Kim, H. J. Kim, J. H. Song // J. Cryst. Growth. – 2002. – Vol. 236. – P. 119–
13
124. 29. Rao A. R. Nanotubes in spray deposited nanocrystalline HgTe:I thin films / A. R. Rao, V. Dutta //
Mater. Res. Soc. Symp. Proc. – 2006. – Vol. 901E. – P. 0901-Ra11-19-Rb11-19. 1-0901-Ra11-19-Rb11-19.
6. 30. Perakh M. Deposition of thin film of HgS from colloidal solution / M. Perakh, H. Ginsburg // Thin
solid films. – 1978. – Vol. 52. – P. 195–202. 31. Mu J. Growth and characterization of β-HgS thin films by
annealing Hg2+-dithiol self-assembled multilayers / J. Mu, Yu. Zhang, Ya. Wang // Journal of Dispersion
Science and Technology. – 2005. – Vol. 26. – P. 641–644. (DOI: 10. 1081/DIS-200057692). 32. Kale S. S.
Preparation and characterization of HgS films by chemical deposition / S. S. Kale, C. D. Lokhande //
Materials Chemistry and Physics. – 1999. – Vol. 59. – P. 242–246. 33. Kale S. S. Thickness dependent
photo-electrochemical cells performance of CdSe and HgS thin films / S. S. Kale, H. M. Pathan,
C. D. Lokhande // Journal of materials science. – 2005. – Vol. 40. – P. 2635–2637. 34. Patil R. S.
Photoelectrochemical studies of chemically deposited nanocrystalline p-type HgS thin films / R. S. Patil,
T. P. Gujar, C. D. Lokhande, R. S. Mane, Sung-Hwan Han // Solar Energy. – 2007. – Vol. 81. – P. 648–652.
35. Najdoski M. Z. Chemical bath deposition of mercury(II) sulfide thin layers / M. Z. Najdoski,
I. S. Grozdanov, S. K. Dey, B. B. Siracevska // J. Mater. Chem. – 1998. – Vol. 8(10). – P. 2213–2215.
36. Pejova B. B. Chemical bath deposition of {111} textured mercury(II) selenide thin layers on
transparent polyester sheets / B. B. Pejova, M. Ž. Najdoski, I. S. Grozdanov, S. K. Dey // J. Mater. Chem. –
1999. – Vol. 9. – P. 2889–2892. 37. Hankare P. P. A novel method to grow polycrystalline HgSe thin film /
P. P. Hankare, V. M. Bhuse, K. M. Garadkar, A. D. Jadhav // Materials Chemistry and Physics. – 2001. –
Vol. 71. – P. 53–57. 38. Ishiwu S. M. Studies on growth and characterizatio of mercury selenide thin films
prepared by chemical bath technique / S. M. Ishiwu, M. N. Nnabuchi // Journal of Ovonic Research. – 2011. –
Vol. 7(1). – P. 9–14. 39. Hankare P. P. Low temperature route to grow polycrystalline cadmium selenide
and mercury selenide thin films / P. P. Hankare, V. M. Bhuse, K. M. Garadkar, S. D. Delekar, I. S. Mulla //
Materials Chemistry and Physics. – 2003. – Vol. 82. – P. 711–717. 40. Girgis S. Y. Structural
characterization and refractive index dispersion analysis of HgSe thin films grown by reactive solutions /
S. Y. Girgis, A. M. Salem, M. S. Selim // J. Phys. : Condens. Matter. – 2007. – Vol. 17. – 11 р. (doi:10.
1088/0953-8984/19/11/116213). 41. Hankare P. P. Chemical deposition of cubic CdSe and HgSe thin films
and their characterization / P. P. Hankare, V. M. Bhuse, K. M. Garadkar, S. D. Delekar, I. S. Mulla //
Semicond. Sci. Technol. – 2004. – Vol. 19. – P. 70–75. (DOI:10. 1088/0268-1242/19/1/012).
42. Pramanik P. Deposition of amorphous mercury selenide thin fsilms by aqueous reactive solution
growth technique / P. Pramanik, S. Bhattacharya // Mat. Res. Bull. – 1989. – Vol. 24(8). – P. 945–952.
43. Bhuse V. M. Structural, оptical and еlectrical рroperties of nanocrystalline Hg(SSe) semiconductor alloy
thin films / V. M. Bhuse // Scholars research library. – 2001. – Vol. 3(5). – P. 339–349.