DETECTION OF “ZERO-VOLUME” DEFECTS IN CONCRETE REPAIR SYSTEMS USING IMPACT-ECHO METHOD

2023;
: 120-128
https://doi.org/10.23939/jtbp2023.01.120
Received: February 20, 2023
Revised: March 28, 2023
Accepted: May 02, 2023
1
Warsaw University of Technology
2
University of Liege
3
Warsaw University of Technology

Adhesion in this system is one of the most important factors that affect the reliability and durability of repair. According to the many standards and guidelines, a pull-off test is recommended for assessment of  a bond quality in repair systems. However, a growing interest in development of non-destructive techniques (NDT) for evaluation of concrete structures is recently noted. A majority of NDT methods mentioned in EN 1504-10 for repair efficiency assessment are based on propagation of stress waves. The impact echo method is considered as a one of the promising. The literature data confirmed that the “non-zero volume” defects containing air are relatively easy to detect with impact-echo method if they are large enough.  It is more complex to detect “zero-volume” defects, e.g dust or any other antiadhesion material. In this work usability of impact-echo for detection of “zero-volume” defects in repair systems is discussed.

O. Abraham, P. Cote (2002). Impact Echo Thickness Frequency Profiles for detection of voids in tendon ducts. ACI Structural Journal 3 (3) 239-248. http://doi.org/10.14359/11907
https://doi.org/10.14359/11907
R.D. Adams, B.W.Drinkwater (1997). Nondestructive testing of adhesively bonded joints. NDT&E Int. 30, 93-98. https://doi.org/10.1016/S0963-8695(96)00050-3
https://doi.org/10.1016/S0963-8695(96)00050-3
B. Bissonnette, L.Courard, A.Garbacz (2016). Concrete Surface Engineering, series: Modern Concrete Technology, CRC Press Taylor & Francis Group, ISBN 9781498704885, pp.258. https://books.google.com.ua/books?id=TWndCgAAQBAJ&lpg=PP1&ots=sXeZsgbOFz...(2016).%20Concrete%20Surface%20&lr&hl=uk&pg=PP1#v=onepage&q&f=false
L. Czarnecki, P.H. Emmons (2002). Naprawa i ochrona konstrukcji betonowych. Polski Cement, Kraków. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-...
Concrete Repair Manual, ACI International, Farmington Hills, MI, USA, pp.862. https://www.concrete.org/tools/concreterepairportal?gclid=Cj0KCQjw6cKiBh...
T. Epp, Y.-J. Cha (2016). Air-coupled impact-echo damage detection in reinforced concrete using wavelet transforms. Smart Materials and Structures 26 (2). https://doi.org/10.1088/1361-665X/26/2/025018
https://doi.org/10.1088/1361-665X/26/2/025018
EN 1504. Products and systems for the protection and repair of concrete structures - Definitions - Requirements - Quality control and evaluation of conformity. https://landingpage.bsigroup.com/ LandingPage/Series?UPI=BS%20EN%201504
A. Garbacz A. (2015). Application of stress based NDT methods for concrete repair bond quality control. Bulletin of the Polish Academy of Sciences Technical Sciences 63 (1), 77-85. http://doi.org/ 10.1515/bpasts-2015-0009
https://doi.org/10.1515/bpasts-2015-0009
A. Garbacz, T. Piotrowski, L. Kwasniewski, L. Courard (2017). On the evaluation of interface quality in concrete repair system by means of impact-echo signal analysis. Construction and Building Materials 134, 311-323. https://doi.org/10.1016/j.conbuildmat.2016.12.064
https://doi.org/10.1016/j.conbuildmat.2016.12.064
Grosse Ch.U., Reinhardt H-W. (2003). New developments in quality control of concrete using ultrasound. In Proc. BB 85-CD (ISBN 3-931381-49-8) International Symposium (NDT-CE 2003) Non-Destructive Testing in Civil Engineering, Berlin. https://mediatum.ub.tum.de/1107934
J. Hoła, K. Schabowicz (2010). State-of-the-art non-destructive methods for diagnostic testing of building structures - anticipated development trends. Archives of Civil and Mechanical Engineering 10 (3), 5-18. https://doi.org/10.1016/S1644-9665(12)60133-2
https://doi.org/10.1016/S1644-9665(12)60133-2
J. Hoła, L. Sadowski, K. Schabowicz (2011). Nondestructive identification of delaminations in concrete floor toppings with acoustic methods. Automation in Construction 20 (7), 799-807. https://doi.org/10.1016/j.autcon.2011.02.002
https://doi.org/10.1016/j.autcon.2011.02.002
Kurz J.H., Finck F., Grosse Ch.U., Reinhardt H-W. (2003). Automatic analysis of acoustic emission measurements on concrete. In Proc. BB 85-CD (ISBN 3-931381-49-8) International Symposium (NDT-CE 2003) Non-Destructive Testing in Civil Engineering, Berlin. http://masters.donntu.ru/2010/fknt/smirnitskiy/library/art5.htm
M. J. Sansalone, W. B. Streett (1997). Impact-echo. Non-destructive evaluation of concrete and masonry. Bullbrier Press. ISBN: 0961261064. https://trid.trb.org/view/573779
Mechtcherine, V. (2013). Novel cement-based composites for the strengthening and repair of concrete structures. Construction and building materials, 41, 365-373. https://doi.org/10.1016/j.conbuildmat.2012.11.117
https://doi.org/10.1016/j.conbuildmat.2012.11.117
Korayem, A. H., Ghoddousi, P., Javid, A. S., Oraie, M. A., & Ashegh, H. (2020). Graphene oxide for surface treatment of concrete: A novel method to protect concrete. Construction and Building Materials, 243, 118229. https://doi.org/10.1016/j.conbuildmat.2020.118229
https://doi.org/10.1016/j.conbuildmat.2020.118229
Ju, M., Park, K., & Oh, H. (2017). Estimation of compressive strength of high strength concrete using non-destructive technique and concrete core strength. Applied Sciences, 7(12), 1249. https://doi.org/10.3390/app7121249
https://doi.org/10.3390/app7121249
Helal, J., Sofi, M., & Mendis, P. (2015). Non-destructive testing of concrete: A review of methods. Electronic Journal of Structural Engineering, 14(1), 97-105. https://doi.org/10.56748/ejse.141931
https://doi.org/10.56748/ejse.141931
Schabowicz, K. (2019). Non-destructive testing of materials in civil engineering. Materials, 12(19), 3237. https://doi.org/10.3390/ma12193237
https://doi.org/10.3390/ma12193237
Villain, G., Garnier, V., Sbartaï, Z. M., Dérobert, X., & Balayssac, J. P. (2018). Development of a calibration methodology to improve the on-site non-destructive evaluation of concrete durability indicators. Materials and Structures, 51, 1-14. https://doi.org/10.1617/s11527-018-1165-4
https://doi.org/10.1617/s11527-018-1165-4