Fingerprint Identification Method Based on Convulsional Neural Networks

2024;
: pp. 1 - 14
1
Lviv Polytechnic National University, Information Systems and Networks Department
2
Lviv Polytechnic National University, Lviv, Ukraine

The article presents an advanced method of fingerprint identification based on convolutional neural network (CNN) technology. This work elaborately describes the development and implementation process of a specialized CNN architecture for detecting and verifying the authenticity of fingerprints. Utilizing the comprehensive Socofing dataset allowed for an in -depth analysis of the model’s ability to distinguish between genuine and fabricated fingerprints, where the model demonstrated impressive accuracy – up to 98.964%. Special attention is given to error analysis, including the false discovery and omission rates, pointing towards potential directions for further improvement. Besides highlighting the technical aspects and high identification accuracy, the article also addresses potential challenges and limitations that the method might encounter. This includes issues related to the imbalance and diversity of data in the Socofing set, as well as limitations associated with computational resources when training deep neural networks. Potential pathways for model optimization are discussed, particularly focusing on reducing the false omission rate, which could improve user experience in authentication. The concluding section of the article emphasizes the importance of the presented work for the security sector, where precise authentication of fingerprint images is critically needed. The obtained results can be considered a solid foundation for future scientific developments in this direction. Additionally, the need for systematic updates and modifications of the model is highlighted to adapt it to continually improved imitation techniques, ensuring its long-term relevance and effectiveness.

  1. Shehu, Y. I., Ruiz-Garcia, A., Palade, V., & James, A. (2018). Sokoto coventry fingerprint dataset. arXiv preprint.    https://doi.org/10.48550/arXiv.1807.10609
  2. Skoryk, Y., & Bezruk, V. (2023). Selection of the preferred method of biometric authentication. International Science Journal of Engineering & Agriculture, 2(4), 28–34. https://doi.org/10.46299/j.isjea.20230204
  3. Salieva, O. V., Zorya, I. S., Bondarenko, I. O., & Berestenko, M. O. (2023). Enhancing the reliability of user authentication based on a secure electronic key and behavioral biometrics. Bulletin of Vinnytsia Polytechnic Institute, (2), 102–111. https://doi.org/10.31649/1997-9266-2023-167-2-102-111
  4. Purish, S. V., Yakovenko, R. O., & Godovychnenko, M. A. (2023). The task of selecting biometric characteristics in human biometric identification systems. In Modern Information Technologies–2023 (pp. 11–13). Retrieved    from   http://dspace.op.edu.ua/jspui/bitstream/123456789/14147/1/MIT2023-Пуріш.pdf
  5. Tsymbal, V. V. (2023). Using biometric authentication methods to ensure a high level of security in telecommunications systems. In Information Modeling Technologies, Systems and Complexes (IMTSC-2023): IV International Scientific and Practical Conference. Cherkasy: Bohdan Khmelnytsky National University of Cherkasy. Retrieved    from   https://fotius.cdu.edu.ua/wp-content/uploads/2023/06/Book_IMTCK_2023.pdf
  6. Andrushkiv, V. V., & Porokhniak, O. Z. (2023). Development  and research of an automated system for personal identification by fingerprints (Master's thesis, Ternopil, TNTU). Retrieved from https://elartu.tntu.edu.ua/handle/lib/43265
  7. Alzubaidi, L., Zhang, J., Humaidi, A. J., et al. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 53. https://doi.org/10.1186/s40537- 021-00444-8
  8. Kothadiya, D., Bhatt, C., Soni, D., Gadhe, K., Patel, S., Bruno, A., & Mazzeo, P. L. (2023). Enhancing fingerprint liveness detection accuracy using deep learning: A comprehensive study and novel approach. Journal of Imaging, 9(8), 158. https://doi.org/10.3390/jimaging9080158
  9. Dzhanoiants, V. O. (2023). A method for recognizing emotional states in human images (Master's thesis, Kyiv                      Polytechnic             Institute              named             after             Igor             Sikorsky).               Retrieved              from https://ela.kpi.ua/server/api/core/bitstreams/e5b27ff3-bcfc-418d-a3a3-3a...
  10. Liu, J., Wang, X., Wu, S., Wan, L., & Xie, F. (2023). Wind turbine fault detection based on deep residual networks. Expert Systems with Applications, 213, 119102. https://doi.org/10.1016/j.eswa.2022.119102
  11. Dong, Y., Jiang, Z., Tao, F., & Fu, Z. (2023). Multiple spatial residual network for object detection. Complex & Intelligent Systems, 9(2), 1347–1362. https://doi.org/10.1007/s40747-022-00859-7
  12. Minaee, S., Abdolrashidi, A., Su, H., Bennamoun, M., & Zhang, D. (2023). Biometrics recognition using deep learning: A survey. Artificial Intelligence Review. https://doi.org/10.48550/arXiv.1912.00271
  13. Sun, Y., Tang, Y., & Chen, X. (2023). A neural network-based partial fingerprint image identification method for crime scenes. Applied Sciences, 13(2), 1188. https://doi.org/10.3390/app13021188
  14. Yakovenko, O. O., Kushnirenko, N. I., Dorofeieva, I. S., & Yevtushenko, A. R. (2019). Development of a face recognition system based on a convolutional neural network. Informatics and Mathematical Methods in Modeling, 9(№ 1-2), 77-87. Retrieved from http://nbuv.gov.ua/UJRN/Itmm_2019_9_1-2_10
  15. Milner, R. (1997). The definition of standard ML: Revised. MIT Press. https://doi.org/10.7551/mitpress/2319.003.0001
  16. Gustisyaf, A. I., & Sinaga, A. (2021). Implementation of convolutional neural network to classification gender based on fingerprint. International Journal of Modern Education & Computer Science, 13(4). DOI: 10.5815/ijmecs.2021.04.05
  17. Nazarkevych, M., Logoyda, M., Dmytruk, S., & Voznyi, Y. (2019). Identification of biometric images using latent elements. CEUR Workshop Proceedings. Retrieved from https://ceur-ws.org/Vol-2488/paper8.pdf
  18. Nazarkevych, M., & Nazarkevych, H. (2019). Ateb-Gabor filtering method in fingerprint recognition. Procedia Computer Science, 160, 30–37. https://doi.org/10.1016/j.procs.2019.09.440
  19. Al-Wajih, Y., Hamanah, W. M., Abido, M. A., Al-Sunni, F., & Alwajih, F. (2022). Finger type classification       with                      deep        convolution   neural            networks.                    Retrieved          from https://www.scitepress.org/PublishedPapers/2022/113271/113271.pdf
  20. Zong, L., Xu, C., & Yuan, H. (2020). A RF fingerprint recognition method based on deeply convolutional neural network. In 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China (pp. 1778–1781). DOI: 10.1109/ITOEC49072.2020.9141877141877