In this article we present an algorithm for visualising the clustering structure of the data model captured by dynamic interval self-organising map (DISOM). The developed visualisation algorithm employs the Self-Organising Map for placing DISOM elements on the 2D lattice in conjunction with U-Matrix algorithm for visualization of data clusters.
1. Dunham M. H. Data Mining: Introductory and Advanced Topics / M. H. Dunham. — Prentice Hall, 2003. — 315 p.
2. Pyle D. Data Preparation for Data Mining / D. Pyle. — Academic Press, 1999. — 540 p.
3. Ultsch A. Self-organizing neural networks for knowledge acquisition / A. Ultsch // Proceedings of the 10th ECAI. — Vienna, Austria: 1992. — P. 208–210.
4. Ultsch A. Maps for the Visualization of highdimensional Data Spaces / A. Ultsch // Proceedings of Workshop on Self Organizing Maps (WSOM03). — Kyushu, Japan: 2003. — P. 225–230.
5. Ultsch A. U*-Matrix: a Tool to visualize Clusters in high dimensional Data / A. Ultsch // Technical Report. — University of Marburg, Department of Computer Science, 2003. — Vol. 36. — P. 1–12.
6. Годич О. В. Індуктивні методи та алгоритми самоорганізації моделей даних на основі карт Кохонена: дис. ... канд. техн. наук : 01.05.03 / О.В. Годич. — Л., 2010. — 171 с.
7. Bauer H. Growing a hypercubical output space in a self-organizing feature map / H. Bauer, T. Villman // IEEE Transactions on Neural Networks. — 1997. — Vol. 8. — P. 218–226.
8. Blackmore J. Visualizing high-dimensional structure with the incremental grid growing neural network: Ph.D. thesis [Електронний ресурс] / The University of Texas at Austin. — 1995, Режим доступу: www.cs.utexas.edu/users/nn/downloads/ papers/blackmore.thesis.pdf.
9. Fritzke B. Growing cell structure — a self-organising network for unsupervised and supervised learning / B. Fritzke // Neural Networks. — 1995. — Vol. 8, no. 9. — P. 1441–1460.
10. Harp S.A. Genetic optimization of self-organizing feature maps / S.A. Harp, T. Samad // Proceedings of IEEE International Joint Confeсence on Neural Networks. — Vol. 1. — Seattle, WA, USA: 1991. — P. 341–346.
11. Huang S. J. Genetic algorithms enhanced kohonen’s neural networks / S. J. Huang, C. C. Hung // Proceedings of IEEE International Joint Conference on Neural Networks. — Vol. 2. — USA: 1995. — P. 708–712.
12. Koh J. A multilayer self-organizing feature map for range image segmentation / J. Koh, M. Suk, S. M. Bhandarkar // Neural Networks. — 1995. — Vol. 8, No. 1. — P. 67–86.
13. Si J. Dynamic topology representing networks / J. Si, S. Lin, M. Vuong // Neural Networks. — 2000. — Vol. 13, No. 6. — P. 617–627.
14. Su M. C. Genetic-algorithm-based approach to self-organizing feature map and its application in cluster analysis / M. C. Su, H. T. Chang // Proceedings of IEEE International Joint Conference on Neural Networks. — Alaska, USA: 1998. — P. 2116–2121.
15. Загоруйко Н. Прикладные методы анализа данных и знаний / Н. Загоруйко. — Новосибирск: ИМ СО РАН, 1999. — 270 с.
16. Годич О. Кластеризацiя даних нейромережею ADD / О. Годич // Вiсник НУЛП, Iнформацiйнi системи та мережi. — 2005. — No 549. — С. 54–68.
17. Годич О. Динамiчна нейромережа ADD / О. Годич, Ю. Щербина // Вiсник Львiвського нац. ун-ту iм. I.Франка, серiя «Прикладна мат. та iнформ.». — 2005. — No 10. — С. 161–183.
18. Годич О. Динамiчна нейромережа ADD / О. Годич, Ю. Щербина // Тез. доп. XII Всеукр. наук. конф. «Сучаснi проблеми прикл. матем. та iнформ.». — Львiв, 2005. — С. 65–66.
19. Rubel O. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data , O. Rubel et al. // IEEE/ACM Trans. Comput. Biol. Bioinformatics. — 2010. — Vol. 7, No. 1. — P. 64–79.
20. Palomo E. J. 2012 Special Issue: Application of growing hierarchical SOM for visualisation of network forensics traffic data. / E. J. Palomo et al. // Neural Netw. — 2012. — Vol. 12. — P. 275–284.
21. Kaban A. On class visualisation for high dimensional data: exploring scientific data sets. / A. Kaban et al.// Proceedings of the 9th international conference on Discovery Science (DS’06). — 2006. — P. 125–136.
22. Lisboa P. J. G. Cluster-based visualisation with scatter matrices. / Lisboa, P. J. G. et al. // Pattern Recogn. Lett. — 2008. — Vol. 29, No. 13. — P. 1814–1823.
23. Gupta G. Automated Hierarchical Density Shaving: A Robust Automated Clustering and Visualization Framework for Large Biological Data Sets. / G. Gupta, A. Liu, J Ghosh // IEEE/ACM Trans. Comput. Biol. Bioinformatics. — 2010. — Vol. 7, No. 2. — P. 223–237.
24. Neme O. Mining the city data: making sense of cities with self-organizing maps / Neme O, Pulido J., Neme A. // Proceedings of the 8th international conference on Advances in self-organizing maps (WSOM’11). — 2010. — P. 168–177.
25. Hansen E. Global Optimization Using Interval Analysis: Revised And Expanded / E. Hansen, G. W. Walster. — 2nd edition. — CRC Press, 2003. — 728 p.
26. Asuncion A. UCI machine learning repository.— 2007, Режим доступу: http://archive.ics.uci.edu/ml.
27. Hodych O. Determining cluster boundaries within Self-Organizing Maps / O. Hodych, I. Nikolski, V. Pasichnyk, Y. Shcherbyna // Вiсник ХПІ. — 2007. — No 5. — С. 97–109.