Determination of Energy Efficiency Acoustic Devices in the Optical Transport Network Using 3D-Analysis of Electromechanical Coupling

: pp. 185 - 193
Lviv Polytechnic National University

In this paper we investigate electromechanical coupling coefficient. We show the investigation importance of spatial distribution coefficient of electromechanical coupling. This parameter characterizes the energy efficiency of piezoelectric transducer that in turn affects the acousto-optic devices in optical transport networks. We present basic definitions and types of electromechanical coupling coefficient. We also show the formula for determining the coefficient of electromechanical coupling that facilitates study of the spatial distribution of this coefficient.

We present a research model of spatial anisotropy for acoustic parameters and prospose an algorithm for constructing the indicative surface of electromechanical coupling coefficients for a particular direction of the radius vector. The radius vector coincides with the direction of acoustic waves propagtion by using the equation Green-Christoffel.

We show the adequacy of the results by analyzing previous studies conducted on the plane X2X3 in LiNbO3 crystals. The indicative surface coefficients of electromechanical coupling have been constructed for the first time. This surfaces have been analyzed and maximum values have been defined. The indicative surfaces of electromechanical coupling coefficients do not exhibit a totally rotational symmetry with the axis of infinity order, what appears to be also consistent with the German’s theorem. According to the principle of Curie- Neumann, the indicative surface is invariant here with respect to the symmetry operations of the point group 3m that describe the symmetry of the crystal structure of LiNbO3 crystals.

The directions of efficient use of LiNbO3 crystal for acoustic device were determined. For transverse polarization directions of efficient 3 % utilization of piezoelectric transducer crystals LiNbO3 were determined. For longitudinal polarization the directions that could improve energy efficiency of acoustic devices were not found.

We stress that further studies of the spatial distribution coefficient of electromechanical coupling to other piezoelectric materials should be conducted. We have concluded that the values of the sample orientation are different from the direction of the main planes of the sample and symmetry planes.

1. F. Musumeci, F. Vismara, V. Grkovic, M.Tornatore, A. Pattavina (2011) “On the Energy Efficiency of Optical Transport with Time Driven Switching” IEEE international Conference (ICC’2011) P. 1–5. 2. Kaidan M., Andrushchak V. (2015) “The model for calculating energy efficiency and ac acousto-optic electrical devices in the optical transport network” //1st International conference on Information and Communication Technologies — 2015 “29 October — 1 November, 2015 Lviv, Ukraina P. 171–174. 3. Kaidan M., Andrushchak V., Pitsyk M. (2015) “Calculation model of energy efficiency in optical transport networks” // 2015 second international scientific-practical conference “Problem of infocommunications science and technology (PIC S&T’2015)” October 13–15, 2015 Kharkiv, Ukraine, P. 167–170. 4. Slepov N.N. (2000) “Modern technology digital fiber-optical communication networks”. Moscow, Radio and Communications, 468 p. 5. Nye J.F. (1985) “Physical Properties of Crystals”, Clarendon, Oxford, 325 p. 6. Bohush M. V. (2006) “Piezoelectric instrument ”: Handbook in 3 volumes. — Rostov-on-Don: Publishing SKNTS HS, V.3. Piezoelectric sensors for extreme conditions, 346 p. 7. Laba H. P., Yurkevych O. V., Karbovnyk I. D., Kaidan M. V., Dumych S. S., Solskii I. M., Andrushchak A. S. (2008) “Spatial anisotropy of electro-, piezo-and acousto-optic effects in crystalline materials of solid electronics. Approbation on example of LiNbO3 and LiNbO3:MgO part II. Completing of elastic and piezoelectric coefficients matrix for LiNbO3 and LiNbO3:MgO crystals” // Herald Lviv Polytechnic National Univ ELEKTRONIKA., № 619, P. 172–180. 8. Andrushchak A. S., Chernyhivsky E. M., Gotra Z. Yu., Kaidan M. V., Kityk A. V., Andrushchak N. A., Maksymyuk T. A., Mytsyk B. G., Schranz W. (2010) “Spatial anisotropy of the acoustooptical efficiency in Lithium Niobate Crystals” // J. Applied Physics. Vol. 108. — P. 103118(1—5). 9. Dieulesaint E., Royer D. (1980). “Elastic waves in solids: applications to signal processing”. Chichester, J. Wiley. 10. Warner A. W., Onoe M., Coquin GA. (1967) “Determination of elastic and piezoelectric constants for crystals in class (3m)” // The Journal of the Acoustical Society of America, Volume 42, Issue 6 — P. 1223–1231. 11. Sirotin Yu. I., Shaskolskaya M. P. (1982)"Fundamentals of Crystal Physics" Moscow: Mir Publ., 640 p. 12. “Physical acoustics-principles and methods” (1964) in Warren P. Mason (ed.): volume I, Parts A and B, Methods and Devices, New York: Academic Press Inc. Cloth. volume IA, 515 p. 13. Koroliuk A. P., Matsakov L. Ia., Vasylchenko V. V. (1970) “Determination of elastic and piezoelectric constants of crystalline lithium niobate single crystals” // Krystallohrafyia T. 15, № 5. — S. 1028–1032. 14. Balakshyi V. I., Paryhyn V. N., Chyrkov L. E. (1985) “Basic Physics of Acoustooptics”, Moscow. Radio and Communications, 280 p. 15. Blystanov A. A., Bondarenko B. C., Chkalova V. V. and etc. (1982) “Acoustic Crystals: Handbook”, in Shaskolskaya M. P. (ed.), Moscow, Nauka/ — 632 p. 16 Shuvalov, L. A., Urusovskaya A. A., Zheludev I. S. (1988) “Physical properties of crystals”, vol. 4. Berlin: Springer. 583 p. 17. Butabaev, Sh. M., Smyslov, Y. Y. (1971) “The indicative the surface of the longitudinal components some tensor fourth rank” // Krystallohrafyia.— Т. 4, No. 4. — С. 796–800. 18. German, V. L. (1945) “Some theorems of anisotropic media” // Dokl. AN USSR. — Т. 48, № 2. — P. 95–98. 19. V. S. Bondarenko, V. P. Zorenko, V. V. Chkalova. (1988) “Acoustooptic modulators of light”. Moscow. Radio and communication. 136 p. 20. М. V. Kaidan, V. S. Andrushchak.(2016) “The determination of parameter of energy efficiency for optical transport network” // Information processing system. — № 7(144). — P. 134–142.