hydrophilicity

THE INVESTIGATION OF THE POROUS STRUCTURE OF CARBON SORBENTS BASED ON β-CYCLODEXTRIN FOR USE IN ENVIRONMENTAL PROTECTION TECHNOLOGIES

In this paper, the porous structure of three types of β-cyclodextrin (β-CD) carbons was synthesized and investigated. The first carbon was obtained from pure β-CD, the second carbon was synthesized from β-CD using the KOH activator, and the third carbon was synthesized from pure β-CD with additional ultrasonic treatment in the non-cavitation mode at the last stage. It was found that the carbon from pure β-CD has a micromesoporous structure with a small specific surface area (~35 m2/g).

Binding of aromaforming cryo- and thermotropic jellies of gelatin and starch

The regularities of binding substances of aromaforming cryo- and thermotropic jellies of gelatin and starch were studied. The influence of the surface of hydrophobic jelly on their ability to absorb aqueous solutions of thymol was experimentally confirmed. The reduction of sorption by thymol cryotropic jellies versus the thermotropic one was established. Experimentally it was confirmed that the most promising technology to create flavors from aromatic hydrophobic substances are thermotropic jellies y of gelatin with high hydrophobicity.

Utilization of Sugar Beet Pulp by Getting Activated Carbon

The formation and properties of sugar beet pulp have been analysed in the article. It has been proposed to use it as raw material to produce activated carbon. A better hydrophilicity of the obtained carbon in comparison with the samples of industrial production has been shown. Structural features and a porous structure of carbon made of sugar beet pulp have been analysed by X-ray diffraction and small angle scattering methods. It has been found that pores with average radii of inertia of 3.5 nm make the main contribution to the pore structure.

Structure Controlled Formation and Properties of Highly Hydrophilic Membranes Based on Polyvinylpyrrolidone Copolymers

Polymerization of hydroxyalkyl(meth)acrylates with polyvinylpyrrolidone has been investigated. Thus highly hydrophilic membranes have been obtained and several properties have been investigated including polymerization rate, viscosity, extinction, water permeability of the membranes, their tensile strength and tensile elongation at break. Parameters characterizing complex formation between monomer and polyvinylpyrrolidone are related to structural parameters of resulting copolymer networks.