пероксид

Initiating and Cross-Linking Properties of Urea-Formaldehyde Oligomers with Peroxide Groups

The initiating properties of urea-formaldehyde oligomers with peroxide groups have been studied. For comparison, the initiating activity has been examined for the polymerization of styrene by the peroxide oligomer based on the epoxy oligomer Epidian-5 and tert-butyl hydroperoxide. The cross-linking properties of the urea-formaldehyde oligomers with peroxide groups have been investigated using unsaturated oligoesters as a model. The chemistry of the formation of the substances with a cross-linked structure has been studied using IR spectroscopy.

Synthesis and Cross-Linking Properties of Melamine Formaldehyde Oligomers with Peroxy Groups

Melamine formaldehyde oligomers with peroxy groups (MFOP) have been synthesized based on melamine or urea and melamine in the presence of tert-butyl peroxymethanol or tert-butyl hydroperoxide. Zinc oxide was used as a catalyst. The effect of peroxide nature, ratio of the starting components and process time on the characteristics and yield of MFOP has been studied. The structure of the synthesized MFOP was confirmed by IR- and PMR-spectroscopy. The chemistry of the cross-linked structures formation was studied.

Synthesis and Structure of Urea-Formaldehyde Oligomers with Peroxide Groups

The possibility of synthesis in the presence of tert-butyl peroxymethanol (TBPM) or tert-butyl hydroperoxide (TBHP) of urea-formaldehyde oligomers with peroxide groups (UFOP) has been considered. Zinc oxide was used as the reaction catalyst. The effect of the initial components ratio, the reaction temperature and the process time on the characteristics and yield of the obtained oligomers was studied. Methods for obtaining UFOP using a mixture of TBPM and TBHP as a component are proposed. The structure of the synthesized UFOP was confirmed by IR- and NMR-spectroscopic studies.

Epoxy Composites Filled with Natural Calcium Carbonate. 1. Epoxy Composites Obtained in the Presence of Monoperoxy Derivative of Epidian-6 Epoxy Resin

Physico-mechanical properties of the products based on filled epoxy-oligomeric mixtures composed of Epidian-5 epoxy resin, oligoesteracrylate TGM-3 and monoperoxide derivative of Epidian-6 epoxy resin (PO) have been investigated. CaCO3 was used as a filler and polyethylene polyamine was a curing agent. The effect of PO and CaCO3 on the gel-fraction content and physico-mechanical properties was examined. Using a scanning electron microscopy (SEM) the morphology of the samples has been studied.

Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar. 2. Coumarone-Indene Resins with Epoxy Group

Coumarone-indene resins with epoxy groups (CIRE) have been obtained using light fraction of coal tar or fraction with the distillation range of 423–463 K based on it. Styrene and glycidyl methacrylate were used as modifiers. CIRE were synthesized via radical cooligomerization using monoperoxide derivative of dioxyphenylpropane diglycidyl ether (PO) as an initiator. Thermal stability of PO has been studied. The effect of initiator amount, reaction temperature and time on the yield and softening temperature of CIRE has been determined.