LSTM

Conception of a new quality control method based on neural networks

The prediction of failures in a factory is now an important area of industry that helps to reduce time and cost of non-quality from the data generated from the sensors installed on production lines, this data is used to detect anomalies and predict defects before they occur.  The purpose of this article is to model an intelligent production line capable of predicting various types of non-conforming products.  For that, we will utilize the neural network methodology within the specific context of a production line specialized in juice manufacturing.  Firstly, we introduc

A drip irrigation prediction system in a greenhouse based on long short-term memory and connected objects

Smart greenhouses use Internet of Things (IoT) technology to monitor and control various factors that affect plant growth, such as soil humidity, indoor humidity, soil temperature, rain sensor, illumination, and indoor temperature.  Sensors and actuators connected to an IoT network can collect data on these factors and use it to automate processes such as watering, heating, and ventilation.  This can help optimize growing conditions and improve crop yield.  To enable their vegetative growth and development, plants need the right amount of water at the right time.  The objective of this work