The results of the analysis of algorithmic models of machine learning application to the freight transportation process are given in this paper. Analysis of existing research allowed discovering a range of advantages in the application of computational intelligence in logistic systems, including increasing the accuracy of forecasting, reduction of transport costs, increasing the efficiency of cargo delivery, risks reduction, and search for key performance factors. In the research process, the main directions of application of algorithmic models of machine learning were determined. They are vehicle routing, choice of cargo type, transportation type and vehicle type; forecasting fuel consumption by vehicles, disruptions in transportation, transport costs, duration of the order fulfillment; evaluation of the rolling stock fleet and the efficiency of carrying out the transport task. Based on the researched publications, the most common algorithmic models of machine learning in freight transportation were identified, and their effectiveness was analyzed. Linear and logistic regression models are simple enough; however, they do not always provide high simulation results. Deep learning models are quite widely applied to all identified areas. Decision tree and random forest models often show the highest simulation performance. Models of k-nearest neighbors and support vectors should be used both in classification tasks, for example, in choosing the type of cargo and type of transportation, and for forecasting the fuel consumption and the duration of the transport process.
1. Mitchell, Tom. (1997). Machine Learning. New York: McGraw-Hill. (in English).
2. Abdelwahab, W., & Sayed, T. (1999). Freight mode choice models using artificial neural networks. Civil Engineering And Environmental Systems, 16(4), 267-286. doi: 10.1080/02630259908970267 (in English).
https://doi.org/10.1080/02630259908970267
3. Profillidis, V., & Botzoris, G. (2019). Artificial Intelligence-Neural Network Methods. Modeling Of Transport Demand, 353-382. doi: 10.1016/b978-0-12-811513-8.00008-x (in English).
https://doi.org/10.1016/B978-0-12-811513-8.00008-X
4. Hryhorov, O. V., Anishchenko H. O., Stryzhak V. V., Petrenko N. O., Turchyn O. V., Okun A. O. & Ponomarov O. E. (2019). Shtuchnyi intelekt. Mashynne navchannia [Artificial Intelligence. Machine learning]. Avtomobil i elektronika. Suchasni tekhnolohii [Vehicle and Electronics. Innovative Technologies]. № 15. pp. 17-27. (in Ukrainian).
5. Tsolaki, K., Vafeiadis, T., Nizamis, A., Ioannidis, D., & Tzovaras, D. (2022). Utilizing machine learning on freight transportation and logistics applications: A review. ICT Express. doi: 10.1016/j.icte.2022.02.001 (in English).
https://doi.org/10.1016/j.icte.2022.02.001
6. Horiainov A. N. (2020). Mashynnoe obuchenye v lohystycheskykh y transportnykh systemakh. [Machine learning in logistics and transport systems]. Ukraina - YeS: problemy naukovoi ta haluzevoi intehratsii: Mater V Vseukr. zaoch. nauk.-pr. konf. Naukove partnerstvo «Tsentr naukovykh tekhnolohii» [Ukraine - EU: problems of scientific and industry integration: Mater V Vseukr. extramural science.-prof. conf. Scientific partnership "Center of Scientific Technologies"]. P. 34-42 (in Ukrainian).
7. Liu, C., Shu, T., Chen, S., Wang, S., Lai, K., & Gan, L. (2016). An improved grey neural network model for predicting transportation disruptions. Expert Systems With Applications, 45, 331-340. doi: 10.1016/j.eswa. 2015.09.052 (in English).
https://doi.org/10.1016/j.eswa.2015.09.052
8. Becker, T., Illigen, C., McKelvey, B., Hülsmann, M., & Windt, K. (2016). Using an agent-based neural-network computational model to improve product routing in a logistics facility. International Journal of Production Economics, 174, 156-167 (in English).
https://doi.org/10.1016/j.ijpe.2016.01.003
9. Van der Spoel, S., Amrit, C., & van Hillegersberg, J. (2015). Predictive analytics for truck arrival time estimation: a field study at a European distribution centre. International Journal Of Production Research, 55(17), 5062-5078. doi: 10.1080/00207543.2015.1064183 (in English).
https://doi.org/10.1080/00207543.2015.1064183
10. AdaBoost Algorithm - A Complete Guide for Beginners. Retrieved from: https://www.analyticsvidhya.com/blog/2021/09/adaboost-algorithm-a-comple... (in English).
11. Servos, N., Liu, X., Teucke, M., & Freitag, M. (2019). Travel Time Prediction in a Multimodal Freight Transport Relation Using Machine Learning Algorithms. Logistics, 4(1), 1. doi: 10.3390/logistics4010001 (in English).
https://doi.org/10.3390/logistics4010001
12. Yakushenko A., Shevchuk D., & Medynskyi D. (2021). Neiromerezheva model dlia prohnozuvannia chasuna vykonannia transportnoi zadachi. [Neural network model for predicting the execution time of a transport task] Science-Based Technologies, 49(1), 33-38. doi:10.18372/2310-5461.49.15289 (in Ukrainian).
https://doi.org/10.18372/2310-5461.49.15289
13. Tortum, A., Yayla, N., & Gökdağ, M. (2009). The modeling of mode choices of intercity freight transportation with the artificial neural networks and adaptive neuro-fuzzy inference system. Expert Systems With Applications, 36(3), 6199-6217. doi: 10.1016/j.eswa.2008.07.032 (in English).
https://doi.org/10.1016/j.eswa.2008.07.032
14. Samimi, A., Razi-Ardakani, H., & Nohekhan, A. (2017). A Comparison between Different Data Mining Algorithms in Freight Mode Choice. American Journal Of Applied Sciences, 14(2), 204-216. doi: 10.3844/ajassp.2017.204.216 (in English).
https://doi.org/10.3844/ajassp.2017.204.216
15. Ahmed, U., & Roorda, M. (2021). Modeling Freight Vehicle Type Choice using Machine Learning and Discrete Choice Methods. Transportation Research Record: Journal Of The Transportation Research Board, 2676(2), 541-552. doi: 10.1177/03611981211044462 (in English).
https://doi.org/10.1177/03611981211044462
16. Rykała, M., & Rykała, Ł. (2021). Economic Analysis of a Transport Company in the Aspect of Car Vehicle Operation. Sustainability, 13(1), 427. doi: 10.3390/su13010427 (in English).
https://doi.org/10.3390/su13010427
17. Bakhtyar, S., & Henesey, L. (2014). Freight transport prediction using electronic waybills and machine learning. Proceedings 2014 International Conference On Informative And Cybernetics For Computational Social Systems (ICCSS), pp. 128-133. doi: 10.1109/iccss.2014.6961829 (in English).
https://doi.org/10.1109/ICCSS.2014.6961829
18. Perrotta, F., Parry, T., & Neves, L. (2017). Application of machine learning for fuel consumption modelling of trucks. 2017 IEEE International Conference On Big Data (Big Data), pp. 3810-3815. doi: 10.1109/bigdata.2017.8258382 (in English).
https://doi.org/10.1109/BigData.2017.8258382
19. Schoen, A., Byerly, A., Hendrix, B., Bagwe, R., Santos, E., & Miled, Z. (2019). A Machine Learning Model for Average Fuel Consumption in Heavy Vehicles. IEEE Transactions On Vehicular Technology, 68(7), pp. 6343-6351. doi: 10.1109/tvt.2019.2916299 (in English).
https://doi.org/10.1109/TVT.2019.2916299
20. Bousonville, T., Cheubou Kamga, D., Krüger, T., & Dirichs, M. (2020). Data driven analysis and forecasting of medium and heavy truck fuel consumption. Enterprise Information Systems, 16(6), 1-19. doi: 10.1080/17517575.2020.1856417 (in English).
https://doi.org/10.1080/17517575.2020.1856417
21. Hamed, M., H.Khafagy, M., & M.Badry, R. (2021). Fuel Consumption Prediction Model using Machine Learning. International Journal Of Advanced Computer Science And Applications, 12(11). doi: 10.14569/ijacsa.2021.0121146 (in English).
https://doi.org/10.14569/IJACSA.2021.0121146
22. Gong, J., Shang, J., Li, L., Zhang, C., He, J., & Ma, J. (2021). A Comparative Study on Fuel Consumption Prediction Methods of Heavy-Duty Diesel Trucks Considering 21 Influencing Factors. Energies, 14(23), 8106. doi: 10.3390/en14238106 (in English).
https://doi.org/10.3390/en14238106
23. Budzyński, A., & Sładkowski, A. (2021). The Use of Machine Learning to Predict Diesel Fuel Consumption in Road Vehicles. 19th European Transport Congress of the EPTS Foundation e.V: European Green Deal Challenges and Solutions for Mobility and Logistics in Cities, pp. 1-6 (in English).
24. Topić, J., Škugor, B., & Deur, J. (2022). Neural Network-Based Prediction of Vehicle Fuel Consumption Based on Driving Cycle Data. Sustainability, 14(2), 744. doi: 10.3390/su14020744 (in English).
https://doi.org/10.3390/su14020744
25. Świderski, A., Jóżwiak, A., & Jachimowski, R. (2018). Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks. Eksploatacja I Niezawodnosc - Maintenance And Reliability, 20(2), 292-299. doi: 10.17531/ein.2018.2.16 (in English).
https://doi.org/10.17531/ein.2018.2.16
26. Singh, A., Das, A., Bera, U., & Lee, G. (2021). Prediction of Transportation Costs Using Trapezoidal Neutrosophic Fuzzy Analytic Hierarchy Process and Artificial Neural Networks. IEEE Access, 9, pp. 103497-103512. doi: 10.1109/access.2021.3098657 (in English).
https://doi.org/10.1109/ACCESS.2021.3098657
27. Kotenko, V.I. (2022). Justification of the feasibility of using artificial neural networks for modeling the transport process of the supply of agricultural products [Obgruntuvannia dotsilnosti zastosuvannia shtuchnykh neironnykh merezh dlia modeliuvannia transportnoho protsesu postachannia silskohospodarskoi produktsii]. X mizhnarodna naukovo-tekhnichna internet-konferentsiia "Problemy i perspektyvy rozvytku avtomobilnoho transportu" [10th International Scientific and Technical Internet Conference "Problems and Prospects of Road Transport Development"]. pp. 172-174. (in Ukrainian).
28. Salakhutdinov, R. (2015). Learning Deep Generative Models. Annual Review Of Statistics And Its Application, 2(1), 361-385. doi: 10.1146/annurev-statistics-010814-020120 (in English).
https://doi.org/10.1146/annurev-statistics-010814-020120
29. Kyslova, O., & Bondarenko, K.B. (2010). Mozhlyvosti zastosuvannia shtuchnykh neironnykh merezh v analizi sotsiolohichnoi informatsii [Possibilities of using artificial neural networks in the analysis of sociological information]. Sotsiolohichni doslidzhennia suchasnoho suspilstva: metodolohiia, teoriia, metody [Sociological research of modern society: methodology, theory, methods], 26. 78-82 (in Ukrainian).
30. Witten, I. H., Frank, E. & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques, Amsterdam: Morgan Kaufmann. (in English).
31. Ni, D., Xiao, Z., & Lim, M. (2019). A systematic review of the research trends of machine learning in supply chain management. International Journal Of Machine Learning And Cybernetics, 11(7), 1463-1482. doi: 10.1007/s13042-019-01050-0
https://doi.org/10.1007/s13042-019-01050-0
32. Top 4 advantages and disadvantages of Support Vector Machine or SVM. Retrieved from: https://dhirajkumarblog.medium.com/top-4-advantages-and-disadvantages-of... 2b107 (in English).
33. Russel, S.J., & Norvig, P. (2003). Artificial Intelligence - A Modern Approach. Prentice Hall Inc., New Jersey (in English).
34. Goodfellow, I., Bengio, Y., & Courville A. (2016). Deep Learning. Adaptive Computation and Machine Learning series. Retrieved from: https://mmsjapan.jp/sites/default/files/pdf-deep-learning-adaptive-compu... (in English).
35. Jordan, M., & Mitchell, T. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. doi: 10.1126/science.aaa8415 (in English).
https://doi.org/10.1126/science.aaa8415
36. Rokach L., & Maimon D. (2015). Data mining with decision trees. Theory and applications (2nd ed). World Scientific Publishing Company. P. 305. (in English).
37. Breiman, L. Random Forests. Machine Learning, 45, 5-32 (2001). doi: 10.1023/A:1010933404324 (in English).
https://doi.org/10.1023/A:1010933404324
38. Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9, 381-386 (in English).
39. Cunningham, P. and Delany, S., 2022. k-Nearest Neighbour Classifiers - A Tutorial. ACM Computing Surveys, 54(6), pp.1-25. doi: 10.1145/3459665 (in English).
https://doi.org/10.1145/3459665
40. Vapnik, V. The nature of statistical learning theory. Springer, New York, 1995. (in English).
https://doi.org/10.1007/978-1-4757-2440-0