Evaluation of transport system configuration by efficiency indicators

TT.
2022;
: 52-62
https://doi.org/10.23939/tt2022.02.052
Received: October 04, 2022
Accepted: October 17, 2022
1
Rzeszow University of Technology
2
Rzeszow University of Technology
3
Cherkasy State Technological University

The study is devoted to the process of evaluating the efficiency of the transport system in terms of urban mobility. The approach is based on the use of a system of performance indicators using neurocomputer technologies. Generalized models for obtaining a vector of performance indicators and an integral performance indicator in the form of computer neural networks are proposed. It is shown that to record the fact that the indicator values fall to the threshold and below, it is enough to use a neural network built on perceptron neurons. The multi-layered model for determining the integral indicator allows assessing the importance of individual indicators in the system of monitoring the efficiency of a given configuration of the transport system. An experimental study of twenty-five states of the transport system of various configurations in the cities of Poland and Ukraine was carried out. The key indicators of the system's efficiency are determined, namely, the energy efficiency indicator of the vehicle as a system element, the environmental indicator and the traffic safety indicator. Based on the results of the experimental study, a neural network structure is proposed for evaluating the energy efficiency of given configurations of the transport system. For the purpose of training and testing the obtained network, the procedure of adjusting the threshold value of the activation function and normalizing the values of the input parameters array of the transport system was used. The constructed network was implemented using Visual Studio 2019 using the C++ language. The network was adjusted to determine the energy efficiency estimate with a given accuracy by replacing the perceptron neuron with a regular one with a sigmoidal activation function. The random nature of the choice of the configuration and the initial values of the weighting factors made it possible to obtain a model with an accuracy of implementation on the control sample in the range from 90 to 98.7% at a learning rate of 0.1.

 

1. Mateichyk, V., Tarandushka, L., & Kostian, N. (2018). Optimization of autoservice enterprises activity based on the current state indicators. In Systemy i srodki transportu samochodowego. Problemy eksploatacji i diagnostyki: wybrane zagadnienia (pp. 91-99). Rzeszow: Transport (in English) 

2. Tarandushka, L., & Kostian, N. (2019). Prohramna pidtrymka restrukturyzatsii vyrobnytstva v systemi upravlinnia yakistiu avtoservisnoho pidpryiemstva [Program support for production restructuring in the quality management system of a car service enterprise]. Naukovyi visnyk Ivano-Frankivskoho natsionalnoho tekhnichnoho universytetu nafty i hazu [Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas], 2(47), 48-56. doi: 10.31471/1993-9965-2019-2(47)-48-56 (in Ukrainian).
https://doi.org/10.31471/1993-9965-2019-2(47)-48-56 

3. Khabutdinov, R.A. (2020) Systemna kontseptsiia enerhoresursnoi synerhii ta metodolohiia tekhnolohichno-innovatsiinoho upravlinnia na avtotransporti [System concept of energy-resource synergy and methodology of technological-innovative management on motor transport]. Visnyk Natsionalnoho transportnoho universytetu [Visnyk National Transport University], 1(46), 365-374. doi: 10.33744/2308-6645-2020-1-46-365-374 (in Ukrainian).
https://doi.org/10.33744/2308-6645-2020-1-46-365-374 

4. Kosai, S., Nakanishi, M. and Yamasue, E. (2018) Vehicle Energy Efficiency Evaluation from well-to-wheel lifecycle perspective. Transportation Research Part D: Transport and Environment, 65, 355-367. doi: 10.1016/j.trd.2018.09.011 (in English).
https://doi.org/10.1016/j.trd.2018.09.011 

5. Abulifa, A. A., Soh, A. C., Hassan, M. K., Ahmad, R. M. K. R., & Radzi, M. A. M. (2019). Energy management system in battery electric vehicle based on fuzzy logic control to optimize the energy consumption in HVAC system. International Journal of Integrated Engineering, 11(4), 11-20. doi: 10.30880/ijie.2019.11.04.002 (in English).
https://doi.org/10.30880/ijie.2019.11.04.002 

6. Lahlou, A., Ossart, F., Boudard, E., Roy, F., & Bakhouya, M. (2020) A real-time approach for thermal comfort management in Electric Vehicles, Energies, 13(15), 4006. doi: 10.3390/en13154006 (in English).
https://doi.org/10.3390/en13154006 

7. Patrone, G.L., Paffumi, E., Otura, M., Centurelli, M., Ferrarese, C., Jahn, S., Brenner, A., & et al (2022). Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle. Energies, 15(4), 1290. doi: 10.3390/en15041290 (in English).
https://doi.org/10.3390/en15041290 

8. Du, J., Rakha, H. A., Filali, F., & Eldardiry, H. (2021). COVID-19 pandemic impacts on traffic system delay, fuel consumption and emissions. International Journal of Transportation Science and Technology, 10(2), 184-196. doi: 10.1016/j.ijtst.2020.11.003 (in English).
https://doi.org/10.1016/j.ijtst.2020.11.003 

9. Śmieszek, M., & Mateichyk, V. (2021). Determining the fuel consumption of a public city bus in urban traffic. In Proceedings of the IOP Conference Series: Materials Science and Engineering. 26th International Slovak-Polish Scientific Conference on Machine Modelling and Simulations (MMS 2021), Vol. 1199, (pp. 1-13). doi: 10.1088/1757-899X/1199/1/012080 (in English).
https://doi.org/10.1088/1757-899X/1199/1/012080 

10. Lim, J., Lee, Y., Kim, K., & Lee, J. (2018). Experimental analysis of calculation of fuel consumption rate by on-road mileage in a 2.0 L gasoline-fueled passenger vehicle. Applied Sciences, 8(12), 2390. doi: 10.3390/app8122390 (in English).
https://doi.org/10.3390/app8122390 

11. Kostian, N., Mateichyk, V., & Śmieszek, M. (2022). Otsiniuvannia enerhovytrat hromadskoho transportu iz vrakhuvanniam potuzhnosti pasazhyropotoku [Estimation of energy consumption of public transport taking into account the capacity of passenger traffic]. Materialy X-oi mizhnarodnoi naukovo-tekhnichnoi internet-konferentsii «Problemy i perspektyvy rozvytku avtomobilnoho transportu» - Materials of X-th international scientific and technical internet-conference «Problems and prospects of development automobile transport». (pp. 168-171). Vinnytsia: VNТU (in Ukrainian). 

12. Śmieszek, M., Kostian, N., Mateichyk, V., Mościszewski, J., & Tarandushka, L. (2021). Determination of the Model Basis for Assessing the Vehicle Energy Efficiency in Urban Traffic. Energies, 14(24), 8538. doi: 10.3390/en14248538 (in English).
https://doi.org/10.3390/en14248538 

13. Kostian, N. (2022). Pro odyn sposib otsiniuvannia enerhoefektyvnosti funktsionuvannia transportnykh system [About one method of evaluating the energy efficiency of the functioning of transport systems]. In IV Mizhnarodnoi naukovo-praktychnoi konferentsii "Pidvyshchennia nadiinosti i efektyvnosti mashyn, protsesiv i system" [4th International Scientific and Practical Conference «Improving the reliability and efficiency of machines, processes and systems»] (pp. 129-130). - Kropyvnytskyi: CUNTU (in Ukrainian). 

14. Lukyanchenko, O., & Tykhy, V. (2022). Kompleksna otsinka efektyvnosti ekspluatatsii avtomobiliv [Comprehensive assessment of the efficiency of car operation]. Materialy X-oi mizhnarodnoi naukovo-tekhnichnoi internet-konferentsii «Problemy i perspektyvy rozvytku avtomobilnoho transportu» [Materials of X-th international scientific and technical internet-conference «Problems and prospects of development automobile transport»]. (pp. 206-209). Vinnytsia: VNТU (in Ukrainian). 

15. Islam, M. K., Gazder, U., Akter, R., & Arifuzzaman, M. (2022). Involvement of Road Users from the Productive Age Group in Traffic Crashes in Saudi Arabia: An Investigative Study Using Statistical and Machine Learning Techniques. Applied Sciences, 12(13), 6368. doi: 10.3390/app12136368 (in English).
https://doi.org/10.3390/app12136368 

16. Klimenko, A., Hill, N., & Windisch, E. (2019). Approaches to regulation of CO2 emission and energy consumption indicators of new light duty vehicles in Ukraine. Visnyk Natsionalnoho transportnoho universytetu [The National Transport University Bulletin], 1(43), 66-75. doi: 10.33744/2308-6645-2019-1-43-006-075 (in English).
https://doi.org/10.33744/2308-6645-2019-1-43-066-075 

17. Bilichenko, V.V., Tarandushka, L.A., Kostian, N.L. & Pylypenko, O.M. (2021). Optymizatsiia merezhi transportu zahalnoho korystuvannia na prykladi m. Cherkasy [Optimization of the transport network by the case of Cherkasy city]. Visnyk mashynobuduvannia ta transportu [Bulletin of Mechanical Engineering and Transport], 1(13), 13-22. doi: 10.31649/2413-4503-2021-13-1-13-22 (in Ukrainian).
https://doi.org/10.31649/2413-4503-2021-13-1-13-22 

18. Smieszek, M., Mateichyk, V., Dobrzanska, M., Dobrzanski, P., & Weigang, G. (2021). The Impact of the Pandemic on Vehicle Traffic and Roadside Environmental Pollution: Rzeszow City as a Case Study. Energies, 14(14), 4299. doi:10.3390/en14144299 (in English).
https://doi.org/10.3390/en14144299 

19. Brzozowski, K., Ryguła, A., & Maczyński, A. (2021). An Integrated System for Simultaneous Monitoring of Traffic and Pollution Concentration - Lessons Learned for Bielsko-Biała, Poland. Energies, 14(23), 8028. doi: 10.3390/en14238028 (in English).
https://doi.org/10.3390/en14238028 

20. Olayode, I. O., Severino, A., Tartibu, L. K., Arena, F., & Cakici, Z. (2021). Performance Evaluation of a Hybrid PSO Enhanced ANFIS Model in Prediction of Traffic Flow of Vehicles on Freeways: Traffic Data Evidence from South Africa. Infrastructures, 7(1), 1-29. doi: 10.3390/infrastructures7010002 (in English).
https://doi.org/10.3390/infrastructures7010002 

21. Katreddi, S., & Thiruvengadam, A. (2021). Trip Based Modeling of Fuel Consumption in Modern Heavy-Duty Vehicles Using Artificial Intelligence. Energies, 14(24), 8592. doi: 10.3390/en14248592 (in English).
https://doi.org/10.3390/en14248592