Previously developed [8] and presented new mathematical models for the analysis of temperature regimes in individual elements of turbo generators, which are geometrically described by isotropic half-space and space with an internal heat source of cylindrical shape. Cases are also considered for half-space, when the fuel-releasing cylinder is thin, and for space, when it is heat-sensitive. For this purpose, using the theory of generalized functions, the initial differential equations of thermal conductivity with boundary conditions are written in a convenient form. To solve the obtained boundary value problems of thermal conductivity, the integral Hankel transformation was used, and as a result, analytical solutions in the images were obtained. The inverse Hankel integral transformation was applied to these solutions, which made it possible to obtain the final analytical solutions of the initial problems. The obtained analytical solutions are presented in the form of improper convergent integrals. Computational programs have been developed to determine the numerical values of temperature in the above structures, as well as to analyze the heat transfer in the elements of turbo generators due to different temperature regimes due to heating by internal heat sources concentrated in the cylinder volume. Using these programs, graphs are presented that show the behavior of curves constructed using numerical values of the temperature distribution depending on the spatial radial and axial coordinates. The obtained numerical values of temperature indicate the correspondence of the given mathematical models for determining the temperature distribution to the real physical process. The software also allows you to analyze media with internal heating, concentrated in the spatial figures of the correct geometric shape, in terms of their heat resistance. As a result, it becomes possible to increase it, to determine the allowable temperatures of normal operation of turbo generators, to protect them from overheating, which can cause the destruction of not only individual elements but also the entire structure.
[1] Bayat, A., Moosavi, H., & Bayat, Y. (2015). Thermo-mechanical analysis of functionally graded thick spheres with linearly time-dependent temperature. Scientia Iranica, 22(5), 1801–1812.
[2] Carpinteri, A., & Paggi, M. (2008). Thermoelastic mismatch in nonhomogeneous beams. J. Eng. Math, 61, 2–4, 371–384.
[3] Gavrysh, V. I., & Fedasjuk, D. V. (2012). Modeljuvannja temperaturnyh rezhymiv u kuskovo-odnoridnyh strukturah. Lviv: Publishing NU "L'vivs'ka politehnika", pp. 176–178.
[4] Ghannad, M., & Yaghoobi, M. P. (2015). A thermoelasticity solution for thick cylinders subjected to thermo-mechanical loads under various boundary conditions. Int. Journal of Advanced Design & Manufacturing Technology, 8(4), 1–12.
[5] Harmatiy, G. Yu., Popovich, V. S., & Krul, M. (2019). Influence of thermal sensitivity of material on unstable thermal state of multilayer plate. Physico-chemical mechanics of materials, 1, 98–104. [In Ukrainian].
[6] Havrysh, V. I., Baranetskiy, Ya. O., & Kolyasa, L. I. (2018). Investigation of temperature modes in thermosensitive non-uniform elements of radioelectronic devices. Radio Electronics, Computer Sciense, Control, 3(46), 7–15.
[7] Havrysh, V. I., Kolyasa, L. I., & Ukhanka, O. M. (2019). Determination of temperature field in thermally sensitive layered medium with inclusions. Naukovyi Visnyk NHU, 1, 94–100.
[8] Havrysh, V. I., Korol, O. S., Shkrab, R. R., & Zimoha, I. O. (2019). Mathematical models of heat transfer in elements of turbogenerators. Ukrainian Journal of Information Technology, 1(1), 22–27. https://doi.org/10.23939/ujit2019.01.022
[9] Hrytsiuk, Yu., & Bilas, O. (2019). Visualization of Software Quality Expert Assessment. IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2019), (Vol. 2, pp. 156–160), 17–20 September, 2019. https://doi.org/10.1109/stc-csit.2019.8929778
[10] Hrytsiuk, Yu., & Grytsyuk, P., Dyak, T., & Hrynyk, H. (2019). Software Development Risk Modeling. IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2019), (Vol. 2, pp. 134–137), 17–20 September, 2019. https://doi.org/10.1109/stc-csit.2019.8929778
[11] Jabbari, M., Karampour, S., & Eslami, M. R. (2011). Radially symmetric steady state thermal and mechanical stresses of a poro FGM hollow sphere. International Scholarly Research Network ISRN Mechanical Engineering, 3, 1–7. https://doi.org/10.5402/2011/305402
[12] Kolyano, Yu. M. (1992). Methods of thermal conductivity and thermoelasticity of an inhomogeneous body. Kyiv: Naukova dumka. [In Ukrainian].
[13] Korn, G., & Korn, T. (1977). A guide to mathematics for scientists and engineers. Moscow: Science. [In Russian].
[14] Lukashevich, A. (2019). Temperature field in the contact zone during rotary friction welding of metals. Physico-chemical mechanics of materials, 1, 41–46. [In Ukrainian].
[15] Mohazzab, A. H., & Jabbari, M. (2011). Two-Dimensional Stresses in a Hollow FG Sphere with Heat Source. Advanced Materials Research, 264–265, 700–705. https://doi.org/10.4028/scientific.net/amr.264-265.700
[16] Podstrigach, Ya. S., Lomakin, V. A., & Kolyano, Yu. M. (1984). Thermoelasticity of bodies of inhomogeneous structure. Moscow: Science. [In Russian].
[17] Yangian, Xu., & Daihui, Tu. (2009). Analysis of steady thermal stress in a ZrO2/FGM/Ti-6Al-4V composite ECBF plate with temperature-dependent material properties by NFEM, WASE. International Conf. on Informa. Eng., 2–2, 433–436.