COMPONENTS OF HARDWARE NEURAL NETWORKS FOR COORDINATED PARALLEL-VERTICAL DATA PROCESSING IN REAL TIME

2021;
: 63-72
https://doi.org/10.23939/ujit2021.03.063
Received: April 09, 2021
Accepted: June 01, 2021

Ци­ту­ван­ня за ДСТУ: Цмоць І. Г., Лу­ка­щук Ю. А., Іг­натєв І. В., Ка­зи­ми­ра І. Я. Ком­по­нен­ти апа­рат­них нейрон­них ме­реж уз­годже­но­го па­ра­лель­но-вер­ти­каль­но­го об­роблен­ня да­них у ре­аль­но­му ча­сі. Ук­ра­їнсь­кий жур­нал ін­форма­ційних тех­но­ло­гій. 2021, т. 3, № 1. С. 63–72.

Ci­ta­ti­on APA: Tsmots, I. H., Lu­kashchuk, Yu. A., Ih­natyev, I. V., & Kazymyra, I. Ya. (2021). Com­po­nents of hardwa­re neu­ral net­works for co­or­di­na­ted pa­ral­lel-ver­ti­cal da­ta pro­ces­sing in re­al ti­me. Uk­ra­ini­an Jo­ur­nal of In­forma­ti­on Techno­logy, 3(1), 63–72. https://doi.org/10.23939/ujit2021.03.063

1
Lviv Polytechnic National University, Lviv, Ukraine
2
Lviv Polytechnic National University, Lviv, Ukraine
3
West Ukrainian National University, Ternopil, Ukraine
4
Lviv Polytechnic National University, Lviv, Ukraine

It is shown that for the pro­ces­sing of in­tensi­ve da­ta flows in in­dustry (ma­na­ge­ment of techno­lo­gi­cal pro­ces­ses and complex ob­jects), energy (op­ti­mi­za­ti­on of lo­ad in po­wer grids), mi­li­tary af­fa­irs (techni­cal vi­si­on, mo­bi­le ro­bot traf­fic control, cryptog­raphic da­ta pro­tec­ti­on), transport (traf­fic ma­na­ge­ment and en­gi­ne), me­di­ci­ne (di­se­ase di­ag­no­sis) and instru­men­ta­ti­on (pat­tern re­cog­ni­ti­on and control op­ti­mi­za­ti­on) the re­al-ti­me hardwa­re neu­ral net­works with high ef­fi­ci­ency of eq­uipment use sho­uld be appli­ed. The ope­ra­ti­onal ba­sis of neu­ral net­works is for­med and the fol­lo­wing ope­ra­ti­ons are cho­sen for hardwa­re imple­men­ta­ti­on: the se­arch of the ma­xi­mum and mi­ni­mum val­ues, cal­cu­la­ti­on of the sum of squa­res of dif­fe­ren­ces and sca­lar pro­duct. Req­ui­re­ments for hardwa­re com­po­nents of neu­ral net­works with co­or­di­na­ted ver­ti­cal-pa­ral­lel da­ta pro­ces­sing are de­ter­mi­ned, the ma­in ones of which are: high ef­fi­ci­ency of eq­uipment use, adap­ta­ti­on to the req­ui­re­ments of spe­ci­fic appli­ca­ti­ons, co­or­di­na­ti­on of in­put da­ta in­tensity with the com­pu­ta­ti­on in­tensity in hardwa­re com­po­nent, re­al-ti­me ope­ra­ti­on, struc­tu­ral fo­cus on VLSI imple­men­ta­ti­on, low de­ve­lop­ment ti­me and low cost. It is sug­gested to eval­ua­te the de­ve­lo­ped hardwa­re com­po­nents of neu­ral net­works ac­cording to the ef­fi­ci­ency of the eq­uipment use, ta­king in­to ac­co­unt the comple­xity of the com­po­nent imple­men­ta­ti­on al­go­rithm, the num­ber of ex­ternal in­terfa­ce pins, the ho­mo­ge­ne­ity of the com­po­nent struc­tu­re and re­la­ti­onship of the ti­me of ba­sic neu­ro-ope­ra­ti­on with the eq­uipment costs. The ma­in ways to control the in­tensity of cal­cu­la­ti­ons in hardwa­re com­po­nents are the cho­ice of the num­ber and bit ra­tes of da­ta pro­ces­sing paths, chan­ging the du­ra­ti­on of the work cycle by cho­osing the spe­ed of the ele­ment ba­se and the comple­xity of ope­ra­ti­ons imple­men­ted by the con­ve­yor. The pa­ral­lel ver­ti­cal-gro­up da­ta pro­ces­sing met­hods are pro­po­sed for the imple­men­ta­ti­on of hardwa­re com­po­nents of neu­ral net­works with co­or­di­na­ted pa­ral­lel-ver­ti­cal control pro­ces­sing, they pro­vi­de control of com­pu­ta­ti­onal in­tensity, re­duc­ti­on of hardwa­re costs and VLSI imple­men­ta­ti­on. A pa­ral­lel ver­ti­cal-gro­up met­hod and struc­tu­re of the com­po­nent of cal­cu­la­ti­on of ma­xi­mum and mi­ni­mum num­bers in ar­rays are de­ve­lo­ped, due to pa­ral­lel pro­ces­sing of a sli­ce from the gro­up of di­gits of all num­bers it pro­vi­des re­duc­ti­on of cal­cu­la­ti­on ti­me ma­inly de­pen­ding on bit si­ze of num­bers. The pa­ral­lel ver­ti­cal-gro­up met­hod and struc­tu­re of the com­po­nent for cal­cu­la­ting the sum of squa­res of dif­fe­ren­ces ha­ve be­en de­ve­lo­ped, due to pa­ral­le­li­za­ti­on and se­lec­ti­on of the num­ber of con­ve­yor steps it en­su­res the co­or­di­na­ti­on of in­put da­ta in­tensity with the cal­cu­la­ti­on in­tensity, re­al-ti­me mo­de and high eq­uipment ef­fi­ci­ency. The pa­ral­lel ver­ti­cal-gro­up met­hod and struc­tu­re of sca­lar pro­duct cal­cu­la­ti­on com­po­nents ha­ve be­en de­ve­lo­ped, the cho­ice of bit pro­ces­sing paths and the num­ber of con­ve­yor steps enab­les the co­or­di­na­ti­on of in­put da­ta in­tensity with cal­cu­la­ti­on in­tensity, re­al-ti­me mo­de and high ef­fi­ci­ency of the eq­uipment. It is shown that the use of the de­ve­lo­ped com­po­nents for the synthe­sis of neu­ral net­works with co­or­di­na­ted ver­ti­cal-pa­ral­lel da­ta pro­ces­sing in re­al ti­me will re­du­ce the ti­me and cost of the­ir imple­men­ta­ti­on.

[1]     Ha­ikin, S. (2016). Neu­ral net­works: full co­ur­se, (2nd ed. add. and re­vi­sed). (Trans. from English). Mos­cow: Wil­li­ams, 1104 p.

[2]     Mo­iseychen­ko, V. S. (2017). Hardwa­re imple­men­ta­ti­on of ar­ti­fi­ci­al neu­ral net­works. Part 1. Yo­ung sci­en­tist, 12(146), 69–72.

[3]     Pa­la­gin, A. V., Bo­yun, V. P., & Ya­kov­lev, Yu. S. (2017). Prob­lems of cre­ating com­pu­ter systems using a na­no­ele­ment ba­se. Control systems and mac­hi­nes, 5, 3–15. https://doi.org/10.15407/usim.2017.05.003

[4]     Pe­leshchak, Ro­man, Lytvyn, Vasyl, Pe­leshchak, Ivan, & Vysotska, Vic­to­ria. (2020). De­ve­lop­ment of an ar­ti­fi­ci­al neu­ral net­work with os­cilla­tory neu­rons for spectral pat­tern re­cog­ni­ti­on. Bul­le­tin of the Na­ti­onal Uni­ver­sity "Lviv Polytechnic" "In­forma­ti­on Systems and Net­works", 7, 16–23. https://doi.org/10.23939/sisn2020.07.016

[5]     Pet­rushen­ko, A. M. (2020). The prin­ciple of firmwa­re control and au­to­ma­ti­on of de­sign of ope­ra­ting de­vi­ces. II. Control Systems and Com­pu­ters, 2, 3–11. https://doi.org/10.15407/csc.2020.02.003

[6]     Rashke­vich, Yu. M., Tkac­henko, R. O., Dra­gon, I. G, & Pe­leshko, D. D. (2014). Neu­ro-li­ke met­hods, al­go­rithms and struc­tu­res of sig­nal and ima­ge pro­ces­sing in re­al ti­me: mo­nog­raph. Lviv: Lviv Polytechnic Pub­lishing Hou­se, 256.

[7]     Tsmots, I. G, Sko­rok­ho­da, O. V., & Me­di­kovsky, M. O. (2019). De­vi­ce for cal­cu­la­ting the sca­lar pro­duct. Pa­tent of Uk­ra­ine for the in­venti­on № 118596, 11.02.2019, Bull. № 3.

[8]     Tsmots, I. G, Teslyuk, V. M, Teslyuk, T. V, Me­di­kovsky, M. O., & Tsymbal, Y. V. (2019). De­vi­ce for cal­cu­la­ting the sums of pa­ired pro­ducts. Pa­tent of Uk­ra­ine № 120210, 25.10.2019, blvd. № 20/2019.

[9]     Tsmots, I. H., Lu­kashchuk, Yu. A., Kha­val­ko, V. M., & Ra­byk, V. H. (2019). Mo­dels of neu­ral ele­ments of pa­ral­lel-pa­ral­lel type. Mo­de­ling and In­forma­ti­on Techno­lo­gi­es, 86, 119–126.

[10]  Tsmots, I., Rabyk, V., Sko­rok­ho­da, O., & Teslyuk, T. (2019). Neu­ral ele­ment of pa­ral­lel-stre­am type with pre­li­mi­nary for­ma­ti­on of gro­up par­ti­al pro­ducts. Electro­nics and in­forma­ti­on techno­lo­gi­es (ELIT-2019): pro­ce­edings of the XIth In­terna­ti­onal sci­en­ti­fic and prac­ti­cal con­fe­ren­ce, 16–18 Sep­tember, Lviv, Uk­ra­ine, 154–158. https://doi.org/10.1109/ELIT.2019.8892334

[11]  Tsmots, Ivan, Sko­rok­ho­da, Olek­sa, Ig­natyev, Ihor, & Rabyk, Vasyl. (2017). Ba­sic Ver­ti­cal-Pa­ral­lel Re­al Ti­me Neu­ral Net­work Com­po­nents. Pro­ce­edings of XI­Ith In­terna­ti­onal Sci­en­ti­fic and Techni­cal Con­fe­ren­ce CSIT 2017, 5–8 Sep­tember 2017. Lviv, Uk­ra­ine, 344–347. https://doi.org/10.1109/STC-CSIT.2017.8098801

[12]  Tsmots, Ivan, Teslyuk, Vasyl, Teslyuk, Ta­ras, & Ih­natyev, Ihor. (2018). Ba­sic Com­po­nents of Neu­ro­net­works with Pa­ral­lel Ver­ti­cal Gro­up Da­ta Re­al-Ti­me Pro­ces­sing. Ad­vances in In­telli­gent Systems and Com­pu­ting II, Ad­vances in In­telli­gent Systems and Com­pu­ting, 689. Sprin­ger In­terna­ti­onal Pub­lishing AG, 558–576. https://doi.org/10.1007/978-3-319-70581-1_39

[13]  Ya­kov­lev, Yu. S. (2016). Abo­ut an es­ti­ma­ti­on of ef­fi­ci­ency of appli­ca­ti­on of FPGA as a part of PIM-systems. Control systems and mac­hi­nes, 1, 56–61. https://doi.org/10.15407/usim.2016.01.056

[14]  Zhang, C., Li, P., Sun, G., Gu­an, Y., Xiao, B., & Cong, Zhang, J. (2015). Op­ti­mi­zing FPGA-ba­sed ac­ce­le­ra­tor de­sign for de­ep con­vo­lu­ti­onal neu­ral net­works. Pro­ce­edings of the 2015 ACM/SIG­DA In­terna­ti­onal Sympo­si­um on Fi­eldProg­rammab­le Ga­te Ar­rays. ACM, 161–170. https://doi.org/10.1145/2684746.2689060

Zo­ev, Y. V., Be­res­nev, A. P., Mar­kov, N. H., & Malchu­kov, A. N. (2017). FPGA-ba­sed de­vi­ce for handwri­ting di­git re­cog­ni­ti­on in ima­ges. Com­pu­ter Op­tics, 41(6), 938–949. https://doi.org/10.18287/2412-6179-2017-41-6-938-949