: 29-36
Received: May 06, 2022
Accepted: May 19, 2022
Uzhhorod National University, Uzhhorod, Ukraine

The problem of convergence of the procedure for synthesizing classifier schemes in the methods of logical and algorithmic classification trees is considered. An upper estimate of the complexity of the algorithm tree scheme is proposed in the problem of approximating an array of real data with a set of generalized features with a fixed criterion for stopping the branching procedure at the stage of constructing a classification tree. This approach allows you to ensure the necessary accuracy of the model, assess its complexity, reduce the number of branches and achieve the necessary performance indicators. For the first time, methods for constructing structures of logical and algorithmic classification trees are given an upper estimate of the convergence of constructing classification trees. The proposed convergence estimate of the procedure for constructing classifiers for LCT/ACT structures makes it possible to build economical and efficient classification models of a given accuracy. The method of constructing an algorithmic classification tree is based on a step-by-step approximation of an initial sample of arbitrary volume and structure by a set of independent classification algorithms. When forming the current vertex of an algorithmic tree, node, or generalized feature, this method highlights the most efficient, high-quality autonomous classification algorithms from the initial set. This approach to constructing the resulting classification tree can significantly reduce the size and complexity of the tree, the total number of branches, vertices, and tiers of the structure, improve the quality of its subsequent analysis, interpretability, and ability to decompose. Methods for synthesizing logical and algorithmic classification trees were implemented in the library of algorithms of the “Orion III” software system for solving various applied problems of artificial intelligence. Practical applications have confirmed the operability of the constructed classification tree models and the developed software. The paper estimates the convergence of the procedure for constructing recognition schemes for cases of logical and algorithmic classification trees under conditions of weak and strong class separation of the initial sample. Prospects for further research and testing may consist in evaluating the convergence of the ACT synthesis procedure in a limited method of the algorithmic classification tree, which consists in maintaining a criterion for stopping the procedure for constructing a tree model by the depth of the structure, optimizing its software implementations, introducing new types of algorithmic trees, as well as experimental studies of this method for a wider range of practical problems.

[1]     Has­tie, T., Tibshi­ra­ni, R., & Fri­ed­man, J. (2008). The Ele­ments of Sta­tis­ti­cal Le­ar­ning. Ber­lin, Sprin­ger.

[2]     Qu­in­lan, J. R. (1986). In­duc­ti­on of De­ci­si­on Tre­es, Mac­hi­ne Le­ar­ning, 1, 81–106.

[3]     Bre­iman, L. L., Fri­ed­man, J. H., Olshen, R. A., & Sto­ne, C. J. (1984). Clas­si­fi­ca­ti­on and reg­res­si­on tre­es. Bo­ca Ra­ton, Chap­man and Hall/CRC.

[4]     Lu­pei, M., Mit­sa, A., Re­pa­ri­uk, V., & Shar­kan, V. (2020). Iden­ti­fi­ca­ti­on of aut­horship of Uk­ra­ini­an-lan­gua­ge texts of jo­ur­na­lis­tic style using neu­ral net­works. Eas­tern-Eu­ro­pe­an Jo­ur­nal of En­terpri­se Techno­lo­gi­es, 1-2(103), 30–36.

[5]     Sub­bo­tin, S. A., & Oli­inyk, A. A. (2017). The Di­men­si­ona­lity Re­duc­ti­on Met­hods Ba­sed on Com­pu­ta­ti­onal In­tel­li­gen­ce in Prob­lems of Ob­ject Clas­si­fi­ca­ti­on and Di­ag­no­sis. Szewczyk, R., Ka­liczyńska, M. (eds) Re­cent Ad­van­ces in Systems, Control and In­for­ma­ti­on Techno­logy. SCIT 2016. Ad­van­ces in In­tel­li­gent Systems and Com­pu­ting, vol 543, 11–19. Sprin­ger, Cham.

[6]     Mi­ya­ka­wa, M. (1989). Cri­te­ria for se­lec­ting a va­ri­ab­le in the construc­ti­on of ef­fi­ci­ent de­ci­si­on tre­es, IEEE Tran­sac­ti­ons on Com­pu­ters, 38(1), 130–141.

[7]     Kos­ki­ma­ki, H., Juu­ti­la­inen, I., Lau­ri­nen, P., & Ro­ning, J. Two-le­vel clus­te­ring appro­ach to tra­ining da­ta instan­ce se­lec­ti­on: a ca­se study for the ste­el in­dustry, Neu­ral Net­works: In­ter­na­ti­onal Jo­int Con­fe­ren­ce (IJCNN-2008), Hong Kong, 1–8 Ju­ne 2008: pro­ce­edings. Los Ala­mi­tos, IEEE, 2008, 3044–3049.

[8]     Sub­bo­tin, S. (2013). The neu­ro-fuzzy net­work synthe­sis and simpli­fi­ca­ti­on on pre­ce­dents in prob­lems of di­ag­no­sis and pat­tern re­cog­ni­ti­on, Op­ti­cal Me­mory and Neu­ral Net­works, 22(2), 97–103.

[9]     Sub­bo­tin, S. A. (2013). Met­hods of sampling ba­sed on ex­ha­us­ti­ve and evo­lu­ti­onary se­arch, Au­to­ma­tic Control and Com­pu­ter Sci­en­ces, 47(3), 113–121.

[10]  De Mánta­ras, R. L. (1991). A dis­tan­ce-ba­sed attri­bu­te se­lec­ti­on me­asu­re for de­ci­si­on tree in­duc­ti­on, Mac­hi­ne le­ar­ning, 6(1), 81–92.

[11]  Ka­ri­mi, K., & Ha­mil­ton, H.J. (2011). Ge­ne­ra­ti­on and In­terpre­ta­ti­on of Tem­po­ral De­ci­si­on Ru­les, In­ter­na­ti­onal Jo­ur­nal of Com­pu­ter In­for­ma­ti­on Systems and In­dustri­al Ma­na­ge­ment Appli­ca­ti­ons, 3, 314–323.

[12]  Ka­miński, B., Ja­kubczyk, M., & Szu­fel, P. (2017). A fra­me­work for sen­si­ti­vity analysis of de­ci­si­on tre­es, Central Eu­ro­pe­an Jo­ur­nal of Ope­ra­ti­ons Re­se­arch, 26(1), 135–159.

[13]  Deng, H., Run­ger, G., & Tuv, E. (2011). Bi­as of im­por­tan­ce me­asu­res for mul­ti-val­ued attri­bu­tes and so­lu­ti­ons, Pro­ce­edings of the 21st In­ter­na­ti­onal Con­fe­ren­ce on Ar­ti­fi­ci­al Neu­ral Net­works (ICANN), 293–300.

[14]  Sub­bo­tin, S. A. (2019). Construc­ti­on of de­ci­si­on tre­es for the ca­se of low-in­for­ma­ti­on fe­atu­res, Ra­dio Electro­nics, Com­pu­ter Sci­en­ce, Control, 1, 121–130.

[15]  Deng, H., Run­ger, G., & Tuv, E. (2011). Bi­as of im­por­tan­ce me­asu­res for mul­ti-val­ued attri­bu­tes and so­lu­ti­ons, 21st In­ter­na­ti­onal Con­fe­ren­ce on Ar­ti­fi­ci­al Neu­ral Net­works (ICANN), Es­poo, 14–17 Ju­ne 2011: pro­ce­edings. Ber­lin, Sprin­ger-Ver­lag, 2, 293–300.

[16]  Pa­insky, A., & Ros­set, S. (2017). Cross-va­li­da­ted va­ri­ab­le se­lec­ti­on in tree-ba­sed met­hods impro­ves pre­dic­ti­ve per­for­man­ce, IEEE Tran­sac­ti­ons on Pat­tern Analysis and Mac­hi­ne In­tel­li­gen­ce, 39(11), 2142–2153.

[17]  Sub­bo­tin, S. A. (2014). Met­hods and cha­rac­te­ris­tics of lo­ca­lity pre­ser­ving transfor­ma­ti­ons in the prob­lems of com­pu­ta­ti­onal in­tel­li­gen­ce, Ra­dio Electro­nics, Com­pu­ter Sci­en­ce, Control, 1, 120–128.

[18]  Kot­si­an­tis, S. B. (2007). Su­per­vi­sed Mac­hi­ne Le­ar­ning: A Re­vi­ew of Clas­si­fi­ca­ti­on Techniq­ues, In­for­ma­ti­ca, 31, 249–268.

[19]  Zhu­rav­lev, Yu. I., & Ni­ki­fo­rov, V. V. (1971). Re­cog­ni­ti­on al­go­rithms ba­sed on the cal­cu­la­ti­on of es­ti­ma­tes, Cyber­ne­tics, 3, 1–11.

[20]  Va­si­len­ko, Y. A., Va­si­len­ko, E. Y., & Povkhan, I. F. (2003). Branched fe­atu­re se­lec­ti­on met­hod in mat­he­ma­ti­cal mo­de­ling of mul­ti-le­vel ima­ge re­cog­ni­ti­on systems, Ar­ti­fi­ci­al In­tel­li­gen­ce, 7, 246−249.

[21]  Povkhan, I. (2020). A constra­ined met­hod of construc­ting the lo­gic clas­si­fi­ca­ti­on tre­es on the ba­sis of ele­men­tary attri­bu­te se­lec­ti­on, CE­UR Workshop Pro­ce­edings: Pro­ce­edings of the Se­cond In­ter­na­ti­onal Workshop on Com­pu­ter Mo­de­ling and In­tel­li­gent Systems (CMIS-2020), Za­po­rizhzhia, Uk­ra­ine, Ap­ril 15–19, 2020. Za­po­rizhzhia, 2608, 843–857.

[22]  Va­si­len­ko, Y. A., Va­si­len­ko, E. Y., & Povkhan, I. F. (2004). Con­cep­tu­al ba­sis of ima­ge re­cog­ni­ti­on systems ba­sed on the branched fe­atu­re se­lec­ti­on met­hod, Eu­ro­pe­an Jo­ur­nal of En­terpri­se Techno­lo­gi­es, 7(1), 13–15.

[23]  Povkhan, I., & Lu­pei, M. (2020). The al­go­rithmic clas­si­fi­ca­ti­on tre­es. Pro­ce­edings of the "2020 IEEE Third In­ter­na­ti­onal Con­fe­ren­ce on Da­ta Stre­am Mi­ning & Pro­ces­sing (DSMP)", Au­gust 21–25, Lviv, Uk­ra­ine, 37–44.

[24]  Povkhan, I., Lu­pei, M., Kli­ap, M., & La­ver, V. (2020). The is­sue of ef­fi­ci­ent ge­ne­ra­ti­on of ge­ne­ra­li­zed fe­atu­res in al­go­rithmic clas­si­fi­ca­ti­on tree met­hods. In­ter­na­ti­onal Con­fe­ren­ce on Da­ta Stre­am Mi­ning and Pro­ces­sing: DSMP Da­ta Stre­am Mi­ning & Pro­ces­sing, Sprin­ger, Cham, 98–113.

[25]  Povkhan, I. (2020). Clas­si­fi­ca­ti­on mo­dels of flo­od-re­la­ted events ba­sed on al­go­rithmic tre­es. Eas­tern-Eu­ro­pe­an Jo­ur­nal of En­terpri­se Techno­lo­gi­es, 6(4), 58–68.

[26]  Rab­can, J., Le­vas­hen­ko, V., Za­it­se­va, E., Kvas­say, M., & Sub­bo­tin, S. (2019). Appli­ca­ti­on of Fuzzy De­ci­si­on Tree for Sig­nal Clas­si­fi­ca­ti­on. IEEE Tran­sac­ti­ons on In­dustri­al In­for­ma­tics, 15(10), 5425–5434.

[27]  Ut­goff, P. E. (1989). Incre­men­tal in­duc­ti­on of de­ci­si­on tre­es. Mac­hi­ne le­ar­ning, 4(2), 161–186.

[28]  Hya­fil, L., & Ri­vest, R. L. (1976). Construc­ting op­ti­mal bi­nary de­ci­si­on tre­es is npcomple­te. In­for­ma­ti­on Pro­ces­sing Let­ters, 5(1), 15–17.

[29]  Wang, H., & Hong, M. (2019). On­li­ne ad ef­fec­ti­ve­ness eval­ua­ti­on with a two-sta­ge met­hod using a Ga­us­si­an fil­ter and de­ci­si­on tree appro­ach. Electro­nic Com­mer­ce Re­se­arch and Appli­ca­ti­ons. 35, Ar­tic­le 100852.­rap.2019.100852

[30]  Kaf­tan­ni­kov, I. L., & Pa­ra­sich, A. V. (2015). De­ci­si­on Tre­es Fe­atu­res of Appli­ca­ti­on in Clas­si­fi­ca­ti­on Prob­lems. Bul­le­tin of the So­uth Ural Sta­te Uni­ver­sity. Ser. Com­pu­ter Techno­lo­gi­es, Au­to­ma­tic Control, Ra­dio Electro­nics, 15(3), 26–32.

[31]  Pov­han, I. F. (2020). Lo­gi­cal re­cog­ni­ti­on tree construc­ti­on on the ba­sis a step-to-step ele­men­tary attri­bu­te se­lec­ti­on. Ra­dio Electro­nics, Com­pu­ter Sci­en­ce, Control, 2, 95–106.

[32]  Bod­yanskiy, Y., Vyno­ku­ro­va, O., Set­lak, G., & Pliss, I. (2015). Hybrid neu­ro-neo-fuzzy system and its adap­ti­ve le­ar­ning al­go­rithm, Xth Sci­en. and Tech. Conf. "Com­pu­ter Sci­en­ces and In­for­ma­ti­on Techno­lo­gi­es" (CSIT), 111–114.

[33]  Sri­kant, R., Ag­ra­wal, R. (1997). Mi­ning ge­ne­ra­li­zed as­so­ci­ati­on ru­les, Fu­tu­re Ge­ne­ra­ti­on Com­pu­ter Systems, 13(2), 161–180.

[34]  Va­si­len­ko, Y. A., & Vas­huk, F. G. (2012). Ge­ne­ral es­ti­ma­ti­on of mi­ni­mi­za­ti­on of tree lo­gi­cal struc­tu­res, Eu­ro­pe­an Jo­ur­nal of En­terpri­se Techno­lo­gi­es, 1/4(55), 29–33.

[35]  Kushneryk, P., Kondra­ten­ko, Y., & Si­den­ko, I. (2019). In­tel­li­gent di­alog­ue system ba­sed on de­ep le­ar­ning techno­logy. 15th In­ter­na­ti­onal Con­fe­ren­ce on ICT in Edu­ca­ti­on, Re­se­arch, and In­dustri­al Appli­ca­ti­ons: PhD Sympo­si­um (IC­TE­RI 2019: PhD Sympo­si­um), Kher­son, Uk­ra­ine, 2403, 53–62.

[36]  Kot­sovsky, V., Gec­he, F., & Bat­yuk, A. (2018). Fi­ni­te ge­ne­ra­li­za­ti­on of the offli­ne spectral le­ar­ning. Pro­ce­edings of the 2018 IEEE Se­cond In­ter­na­ti­onal Con­fe­ren­ce on Da­ta Stre­am Mi­ning & Pro­ces­sing (DSMP), Lviv, Uk­ra­ine Au­gust 21–25, 356–360.