A method for recognizing contours of objects in a video data stream is proposed. Data will be uploaded using a video camera in real time and object recognition will be performed. We will use the YOLO network – a method of identifying and recognizing objects in real time. Recognized objects will be recorded in a video sequence showing the contours of the objects. The approach proposed in the project reasonably synthesizes methods of artificial intelligence, theories of computer vision on the one hand, and pattern recognition on the other; it makes it possible to obtain control influences and mathematical functions for decision-making at every moment of time with the possibility of analyzing the influence of external factors and forecasting the flow of processes, and refers to the fundamental problems of mathematical modeling of real processes. The installation of the neural network is shown in detail. The characteristics of the neural network are shown and its capabilities are substantiated. Approaches to computer vision for object extraction are shown. Well-known methods are methods of expanding areas, methods based on clustering, contour selection, and methods using a histogram. The work envisages building a system for rapid identification of combat vehicles based on the latest image filtering methods developed using deep learning methods. The time spent on identifying the machine will be 10 –20 % shorter, thanks to the developed new information technology for detecting objects in conditions of rapidly changing information.
- Liu, J., Xie, G., Wang, J., Li, S., Wang, C., Zheng, F., & Jin, Y. (2024). Deep industrial image anomaly detection: A survey. Machine Intelligence Research, 21(1), 104–135. https://doi.org/10.1007/s11633-023-1459-z
- Kruger-Marais, E. (2024). Subtitling for language acquisition: Eye tracking as predictor of attention allocation in education. International Journal of Language Studies, 18(2). DOI: 10.1007/s11633-023-1459-z
- Li, P., Zhang, Y., Yuan, L., Xiao, H., Lin, B., & Xu, X. (2024). Efficient long-short temporal attention network for unsupervised video object segmentation. Pattern Recognition, 146, 110078. DOI: 10.48550/arXiv.2309.11707
- Ladonia, M. S. Дослідження впливу значення порогу Non-Maximal Suppression на здатність YOLO до розпізнавання об’єктів на зображеннях низької якості. Problems of Informatization and Management, 2(74), 68–73. https://doi.org/10.18372/2073-4751.74.17884
- Weber E., Vedaldi A., Bischof H., Brox T., Frahm J. M. (2020). Detecting Natural Disasters, Damage, and Incidents in the Wild. Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science. Vol. 12364, 331–350.
- Laroca, R., Severo, E., Zanlorensi, L. A., Oliveira, L. S., Gonçalves, G. R., Schwartz, W. R., & Menotti,D. (2018, July). A robust real-time automatic license plate recognition based on the YOLO detector. In 2018 international joint conference on neural networks (ijcnn), 1–10. IEEE.
- Shinde, S., Kothari, A., & Gupta, V. (2018). YOLO based human action recognition and localization.Procedia computer science, 133, 831–838.
- Shinde, S., Kothari, A., & Gupta, V. (2018). YOLO based human action recognition and localization.Procedia computer science, 133, 831–838.
- Du, J. (2018, April). Understanding of object detection based on CNN family and YOLO. In Journal of Physics: Conference Series (Vol. 1004, p. 012029). IOP Publishing.
- Li, Y., Zhao, Z., Luo, Y., & Qiu, Z. (2020). Real-time pattern-recognition of GPR images with YOLO v3 implemented by tensorflow. Sensors, 20(22), 6476. https://doi.org/10.3390/s20226476
- Chen, H., He, Z., Shi, B., & Zhong, T. (2019). Research on recognition method of electrical components based on YOLO V3. IEEE Access, 7, 157818–157829.
- Kawamura, E., Kannan, K., Lombaerts, T., Stepanyan, V., Dolph, C., & Ippolito, C. A. (2024). Ground- Based Vision Tracker for Advanced Air Mobility and Urban Air Mobility. In AIAA SciTech 2024 Forum (p. 2010). DOI: 10.2514/6.2024-2010
- Yin, Z., Ni, Y., Li, L., Wang, T., Wu, J., Li, Z., & Tan, D. (2024). Numerical modeling and experimental investigation of a two-phase sink vortex and its fluid-solid vibration characteristics. Journal of Zhejiang University- SCIENCE A, 25(1), 47–62. DOI: 10.1631/jzus.A2200014
- Wolf, T., Fridovich-Keil, D., & Jones, B. A. (2024). Mutual Information-Based Trajectory Planning for Cislunar Space Object Tracking using Successive Convexification. In AIAA SCITECH 2024 Forum (p. 0626). doi.org/10.2514/6.2024-0626
- Zhang, H., Zheng, D., Zhang, Y., Cao, J., Lin, W., & Ling, W. K. (2024). Quality Assessment for DIBR- synthesized Views based on Wavelet Transform and Gradient Magnitude Similarity. IEEE Transactions on Multimedia. DOI: 10.1109/TMM.2024.3356029.
- Qin, Q., & Chen, Y. (2024). A review of retinal vessel segmentation for fundus image analysis. Engineering Applications of Artificial Intelligence, 128, 107454. https://doi.org/10.1016/j.engappai.2023.107454
- Li, M., Cui, Q., Wang, X., Zhang, Y., & Xiang, Y. Ftpe-Bc: Fast Thumbnail-Preserving Image Encryption Using Block-Churning. Available at SSRN 4698446 .doi.org/10.2139/ssrn.4698446
- Clayton-Chubb, D., Kemp, W. W., Majeed, A., Lubel, J. S., Woods, R. L., Tran, C., ... & Roberts, S. K. (2024). Metabolic dysfunction-associated steatotic liver disease in older adults is associated with frailty and social disadvantage. Liver International, 44(1), 39–51. https://doi.org/10.1111/liv.15725
- Mira, E. S., Sapri, A. M. S., Aljehanı, R. F., Jambı, B. S., Bashir, T., El-Kenawy, E. S. M., & Saber, M. (2024). Early Diagnosis of Oral Cancer Using Image Processing and Artificial Intelligence. Fusion: Practice and Applications, 14(1), 293–308.
- Qiao, L., Liu, K., Xue, Y., Tang, W., & Salehnia, T. (2024). A multi-level thresholding image segmentation method using hybrid Arithmetic Optimization and Harris Hawks Optimizer algorithms. Expert Systems with Applications, 241, 122316. https://doi.org/10.1016/j.eswa.2023.122316
- Wang, Z., Deng, Y., Zhang, Y., Tang, X., Zhou, P., Li, P., ... & Zhang, M. (2024). Fibrous whey protein mediated homogeneous and soft-textured emulsion gels for elderly: Enhancement of bioaccessibility for curcumin. Food Chemistry, 437, 137850. https://doi.org/10.1016/j.foodchem.2023.137850
- Gao, J., & Huang, Y. (2024). FP-Net: frequency-perception network with adversarial training for image manipulation localization. Multimedia Tools and Applications, 1–19. https://doi.org/10.1007/s11042-023-17914-1
- Su, Y., Tan, W., Dong, Y., Xu, W., Huang, P., Zhang, J., & Zhang, D. (2024). Enhancing concealed object detection in Active Millimeter Wave Images using wavelet transform. Signal Processing, 216, 109303. https://doi.org/10.1016/j.sigpro.2023.109303
- Bhandari, J., & Russo, D. (2024). Global optimality guarantees for policy gradient methods. Operations Research. https://doi.org/10.1287/opre.2021.0014
- Qian, K., & Duan, H. C. (2024). Optical counting platform of shrimp larvae using masked k-means and a side window filter. Applied Optics, 63(6), A7–A15. https://doi.org/10.1364/AO.502868
- Lee, S., Kim, J., Bae, P., Lee, S., & Kim, H. (2024). Intensity Histogram-Based Reliable Image Analysis Method for Bead-Based Fluorescence Immunoassay. BioChip Journal, 1–9. https://doi.org/10.1007/s13206-023- 00137-9
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 779–788.
- Zhang, T., Chowdhery, A., Bahl, P., Jamieson, K., & Banerjee, S. (2015, September). The design and implementation of a wireless video surveillance system. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, 426–438. https://doi.org/10.1145/2789168.2790123
- Nazarkevych, M., Logoyda, M., Troyan, O., Vozniy, Y., & Shpak, Z. (2019, September). The ateb-gabor filter for fingerprinting. In Conference on Computer Science and Information Technologies, 247–255. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-33695-0_18
- Boyko, N., Kuba, M., Mochurad, L., & Montenegro, S. (2019). Fractal Distribution of Medical Data in Neural Network. In IDDM, 307–318.