VISUALIZATION AND INCREASING THE INFORMATIVENESS OF LARGE GRAPHIC FILES

2022;
: 78-84
https://doi.org/10.23939/ujit2022.01.078
Received: March 29, 2022
Accepted: May 19, 2022

Ци­ту­вання за ДСТУ: Жу­ра­вель І. М., Ми­чу­да Л. З. Ме­то­ди підви­щення інформа­тивності та зменшення об'єму гра­фічних да­них на осно­ві ана­лі­зу їх ко­лірно­го просто­ру. Укра­їнсь­кий журнал інформа­ційних техно­ло­гій. 2022, т. 4, № 1. С. 78–84.

Ci­ta­ti­on APA: Zhu­ra­vel, I. M., & Mychu­da, L. Z. (2022). Vi­su­ali­za­ti­on and incre­asing the informa­ti­ve­ness of large graphic fi­les. Ukra­ini­an Jo­urnal of Informa­ti­on Techno­logy, 4(1), 78–84. https://doi.org/10.23939/ujit2022.01.078

1
Lviv Polytechnic National University, Lviv, Ukraine
2
Lviv Polytechnic National University, Department of Computerized Automation Systems

The constant development of digital technology has led to a sharp increase in the number and volume of media files, including digital images, which make up a significant part of computer network traffic, which reduces the speed of their transmission. The research conducted in this work is based on the provisions and methods of digital image processing, the laws of visual perception, the basics of probability theory and mathematical modeling. The results of theoretical research were verified by simulation. The paper proposes a technology that, through the analysis of the color space of the image and taking into account the laws of visual perception, makes it possible to significantly reduce the size of the image file. This technology is used to solve a number of problems, in particular, the visualization of large files and increase the informativeness of images with complex semantic content. It is established that the reduction of the image file size is achieved through the optimization of the palette and leads to a slight deterioration in the visual quality of image perception. To reduce the visibility of error and create a visual sense of the presence of more different colors in the image than is actually the case, it is proposed to use diffuse pseudo-mixing of colors, which is to model some colors with others. Along with the task of reducing the volume of graphic files based on the optimization of the palette, a similar methodology was developed to increase the informativeness of images through the use of pseudo-colors. By modifying the function of converting the coordinates of color space into color components, a modified approach to the formation of pseudo-color images is proposed, which increases the informativeness of halftone digital images in their visual analysis.

[1]     Ajay, Ku­mar, Bo­yat, Bri­jendra, & Ku­mar, Jos­hi (2015). A Re­vi­ew Pa­per: No­ise Mo­dels In Di­gi­tal Ima­ge Pro­ces­sing. SI­PIJ, 6(2), 63–75. https://doi.org/10.5121/sipij.2015.6206

[2]     Andrews, H. C., Tescher, A. G., & Kru­ger, R. P. (1972). Ima­ge pro­ces­sing by di­gi­tal com­pu­ters. IEEE Spectrum, 9(7), 20–32. https://doi.org/10.1109/MSPEC.1972.5218964

[3]     Cheng, Z., Sun, H., Ta­ke­uc­hi, M., & Kat­to, J. (2020). Le­ar­ned Ima­ge Compres­si­on With Discre­ti­zed Ga­us­si­an Mix­tu­re Li­ke­li­ho­ods and At­ten­ti­on Mo­du­les. Pro­ce­edings of the IEEE/CVF Con­fe­ren­ce on Com­pu­ter Vi­si­on and Pat­tern Re­cog­ni­ti­on (CVPR), 7939–7948. https://doi.org/10.1109/CVPR42600.2020.00796

[4]     Choi, Y., El-Khamy, M., & Lee, J. (2019). Va­ri­ab­le Ra­te De­ep Ima­ge Compres­si­on With a Con­di­ti­onal Au­to­en­co­der. Pro­ce­edings of the IEEE/CVF In­ter­na­ti­onal Con­fe­ren­ce on Com­pu­ter Vi­si­on (ICCV), 3146–3154. https://doi.org/10.1109/ICCV.2019.00324

[5]     Cos­man, P. C., Gray, R. M., & Olshe, R. A. (1994). Eval­ua­ting Qua­lity of Compres­sed Me­di­cal Ima­ges. Pro­ce­edings of the IEEE "SNR, Sub­jec­ti­ve Ra­ting, and Di­ag­nos­tic Ac­cu­racy, 82(6), 919–932. https://doi.org/10.1109/5.286196

[6]     Franchi­ni, Gi­or­gia, Ca­vicchi­oli, Ro­ber­to, & Cheng Hu, Jia. (2019). Stoc­has­tic Floyd-Ste­in­berg dit­he­ring on GPU: ima­ge qua­lity and pro­ces­sing ti­me impro­ved, Fifth In­ter­na­ti­onal Con­fe­ren­ce on Ima­ge In­for­ma­ti­on Pro­ces­sing (ICI­IP), No­vem­ber 2019. https://doi.org/10.1109/ICIIP47207.2019.8985831

[7]     Gon­za­lez, R. C., & Wintz, P. (1987). Di­gi­tal Ima­ge Pro­ces­sing. Ad­dis­son – Wes­ley. Re­ading. Mas­sac­hu­setts. 505 p.

[8]     Gor­don, R., & Ran­gay­yan, R. M. (1984). Fe­atu­re en­han­ce­ment of film mam­mog­rams using fi­xed and adap­ti­ve ne­ighbo­ur­ho­od. Appli­ed op­tics, 23, 560–564. https://doi.org/10.1364/AO.23.000560

[9]     Ho­sa­ka, K. (1986). A new pic­tu­re qua­lity eval­ua­ti­on met­hod. Proc. In­ter­na­ti­onal Pic­tu­re Co­ding Sympo­si­um, Tok­yi, Ja­pan, 316–321.

[10]  Hri­az­nov, A. Iu. (2016). Techniq­ue for ob­ta­ining pseu­do-co­lor x-ray ima­ges in du­al-energy ra­di­og­raphy. Bi­otechnosphe­re, 3(33). 17–20. [In Rus­si­an].

[11]  In­ter­net Mic­ros­co­pe Techno­log (2018). iMic­ro­Tec, Inc. Ret­ri­eved from: http://www.vi­de­otest.ru

[12]  Ka­ri­mov, A., Ko­pets, E., Ko­lev, G., Le­onov, S., Sca­le­ra, L., & Bu­tu­sov, D. (2021). Ima­ge Prep­ro­ces­sing for Ar­tis­tic Ro­bo­tic Pa­in­ting. In­ven­ti­ons, 6(1), 19. https://doi.org/10.3390/inventions6010019

[13]  Ku­mar, P., & Par­mar, A. (2020). Ver­sa­ti­le Appro­ac­hes for Me­di­cal Ima­ge Compres­si­on: A Re­vi­ew Pro­ce­dia Com­pu­ter Sci­en­ce, 167, 1380–1389. https://doi.org/10.1016/j.procs.2020.03.349

[14]  Mentzer, F., Agustsson, E., Tschan­nen, M., Ti­mof­te, R., & Van Go­ol, L. (2019). Prac­ti­cal Full Re­so­lu­ti­on Le­ar­ned Lossless Ima­ge Compres­si­on. Pro­ce­edings of the IEEE/CVF Con­fe­ren­ce on Com­pu­ter Vi­si­on and Pat­tern Re­cog­ni­ti­on (CVPR), 10629–10638. https://doi.org/10.1109/CVPR.2019.01088

[15]  Me­tal­log­rap­hic Eq­uip­ment and Con­su­mab­les (2007). PA­CE Techno­lo­gi­es. Ret­ri­eved from: http://www.me­tal­log­rap­hic.com

[16]  Qi­an, Lin. (1993). Halfto­ne ima­ge qua­lity analysis ba­sed on a hu­man vi­si­on mo­del, Proc. SPIE 1913, Hu­man Vi­si­on, Vis­ual Pro­ces­sing, and Di­gi­tal Display IV, 8 Sep­tem­ber 1993. https://doi.org/10.1117/12.152712

[17]  Rah­man, M. A, & Ha­ma­da, M. (2019). Lossless Ima­ge Compres­si­on Techniq­ues: A Sta­te-of-the-Art Sur­vey. Symmetry, 11(10), 1274. https://doi.org/10.3390/sym11101274

[18]  Sto­kes, Mic­ha­el, An­der­son, Matthew, Chandra­se­kar, Sri­ni­va­san, & Mot­ta, Ri­car­do (No­vem­ber 5, 1996). A Stan­dard De­fa­ult Co­lor Spa­ce for the In­ter­net: sRGB, Ver­si­on 1.10. ICC. Ret­ri­eved from: https://www.co­lor.org/sRGB.xal­ter

[19]  Vo­ro­bel, R., Zhu­ra­vel, I., Opyr, N., & Po­pov, B. (1998). Ima­ge qua­lity en­han­ce­ment techniq­ue for X – ray tes­ting. 2nd In­ter­na­ti­onal Con­fe­ren­ce on Com­pu­ter Met­hods and In­ver­se Prob­lems in Non­destruc­ti­ve Tes­ting and Di­ag­nos­tics, Minsk, 20–23 Oc­to­ber 1998. Pro­ce­edings, 449–455.

[20]  Zhu­ra­vel, I. M. (2019). Com­pu­ter Analysis of the Distri­bu­ti­on of Gra­in Si­zes in the Struc­tu­re of 12Kh1MF Ste­el Af­ter Ope­ra­ti­on. Ma­te­ri­als Sci­en­ce, 55(4), 187–192. https://doi.org/10.1007/s11003-019-00287-y