Hardware and software provision of the vibration acceleration spectrum monitoring system

2023;
: 51-60
https://doi.org/10.23939/ujit2023.01.051
Received: April 15, 2023
Accepted: May 02, 2023

Цитування за ДСТУ: Теслюк В. М., Ріпак Н. С., Головатий А. І., Опотяк Ю. В., Теслюк Т. В. Апаратне та програмне забезпечення системи моніторингу спектру віброприскорень. Український журнал інформаційних технологій. 2023. Т. 5, № 1. С. 51–60.

Citation APA: Teslyuk, V. M., Ripak, N. S., Holovaty, A. I., Opotyak, Y. V., Teslyuk, T. V. (2023). Hardware and software provision of the vibration acceleration spectrum monitoring system. Ukrainian Journal of Information Technology, 5(1), 51–60. https://doi.org/10.23939/ujit2023.01.051

1
Lviv Polytechnic National University, Lviv, Ukraine
2
Lviv Polytechnic National University, Lviv, Ukraine
3
Lviv Polytechnic National University, Lviv, Ukraine
4
Lviv Polytechnic National University, Lviv, Ukraine
5
Lviv Polytechnic National University, Lviv, Ukraine

Among all types of mechanical influences, vibration is the most dangerous for technical objects. Alternating stresses caused by vibration contribute to the accumulation of damage in materials, system design, and failure. The destruction of the object occurs quite quickly under vibrational influences under the conditions of resonance, at the same time, vibration causes a violation of the physiological and functional states of a person. The impact of vibration on a person depends on its spectral composition, direction of action, duration of exposure, as well as on the individual characteristics of the person.

The structure of the vibration acceleration spectrum monitoring system was developed, which is based on the modular principle and includes a microcontroller, an accelerometer, a liquid crystal graphic color display, flash memory, and a microcomputer monitor. Algorithms of the vibration acceleration spectrum monitoring system were developed, including the accelerometer calibration algorithm, the dynamic acceleration measurement algorithm, and the fast Fourier transformation algorithm. The I2C interface for data exchange between the ADXL345 accelerometer and the Raspberry Pi 3 Model B microcomputer is defined. The software that processes the input information from several accelerometers connected to the Raspberry Pi, which enables multi-channel measurements and their analysis, is developed. The results of testing the built system are given which make it possible to assert the correctness and correctness of the functioning of the developed system.

The article includes an introduction, an analysis of literary sources with a statement of the researched problem, in the section “Development of the structure and information support of the system for monitoring the spectrum of vibration accelerations” the developed structure of the system and the features of its hardware implementation are given. The hardware implementation was based on the use of inexpensive components to ensure a low price of the technological solution. In addition, in this section, I2C is selected for the implementation of data exchange between the components of the vibration spectrum monitoring system. The section “Algorithmic support of the designed system” describes the main steps of the algorithm. The section “Development of the vibration acceleration monitoring system software” includes information about the developed structure of the software and a brief description of a specific component. The results of testing the developed system are given in the section “Obtained results and their analysis”. The main results of the conducted research are formulated in the conclusions.

[1] Сєріков, Я. О., Таланін, Д. С., & Сєріков, С. Я. (2013). Інформаційні технології у вирішенні завдань забезпечення безпеки життєдіяльності людини, ергономіки, охорони праці і навколишнього середовища : монографія: у 2-х ч.

[2] Системи моніторингу і контролю вібрацій http://www.omative.com/КонтрольВибрации.html

[3] https://repo.knmu.edu.ua/bitstream/

[4] Iwaniec, M., Holovatyy, A., Teslyuk, V., Lobur, M., Kolesnyk, K., & Mashevska, M. (2017). Development of vibration spectrum analyzer using the Raspberry Pi microcomputer and 3-axis digital MEMS accelerometer ADXL345. In 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH). (pp. 25–29). IEEE. https://doi.org/10.1109/MEMSTECH.2017.7937525  

[5] Hjort, A., & Holmberg, M. (2015). Measuring Mechanical Vibrations using Arduino as a slave I/O to an EPICS Control System.

[6] Holovatyy, A., Teslyuk, V., Iwaniec, M., & Mashevska, M. (2017). Development of a system for monitoring vibration accelerations based on the raspberry pi microcomputer and the adxl345 accelerometer. Восточно-Европейский журнал передовых технологий, 6(9), 52–62. https://doi.org/10.15587/1729-4061.2017.116082

[7] Griffin, M. J. (2004). Minimum health and safety requirements for workers exposed to hand-transmitted vibration and whole-body vibration in the European Union; a review. Occupational and Environmental Medicine, 61(5), 387–397. https://doi.org/10.1136/oem.2002.006304

[8] Raă, G., & Raă, M. (2014). System for Monitoring and Analysis of Vibrations at Electric Motors. Intern. Journal of Emerging Technology and Advanced Engineering, 21(3), 97–104.

[9] Лезновський, О. А. (2020). Розробка програмно-апарат-
ної системи вібродіагностики промислового обладнання.
Клієнтська частина.

[10] Ніконов, М. С., Борзенков, І. І., & Лебединський, І. Л. (2021). Розробка вимірювальної системи та програмного про­кту для збору та аналізу параметрів якості електроенер­гії. Вісник Національного технічного університету “ХПІ”. Серія: Енергетика: надійність та енергоефективність, (1 (2)), 86–90.

[11] Milovančević, M., Veg, A., Makedonski, A., & Marinović, J. S. (2014). Embedded systems for vibration monitoring. Facta Universitatis, series: Mechanical Engineering, 12(2), 171–181.

[12] Rocha, S. M. S., Feiteira, J. F. S., Mendes, P. S. N., Da Silva, U. P. B., & Pereira, R. F. (2016). Method to Measure Displacement and Velocity from Acceleration Signals. Intern. Journal of Engineering Research and Applications, 6(6), 52–59.

[13] Sekiya, H., Kimura, K., & Miki, C. (2016). Technique for determining bridge displacement response using MEMS accelerometers. Sensors, 16(2), 257. https://doi.org/10.3390/s16020257

[14] Теслюк, В., Зелінський, А., Каркульовський, В., & Васи-
люк, Я. Розширене проектування мікросистемних пристроїв.

[15] Goyal, D., & Pabla, B. S. (2016). Development of non-contact structural health monitoring system for machine tools. Journal of applied research and technology, 14(4), 245–258. https://doi.org/10.1016/j.jart.2016.06.003

[16] Albarbar, A., Mekid, S., Starr, A., & Pietruszkiewicz, R. (2008). Suitability of MEMS accelerometers for condition monitoring: An experimental study. Sensors, 8(2), 784–799. https://doi.org/10.3390/s8020784

[17] Hjort, A., & Holmberg, M. (2015). Measuring Mechanical Vibrations using Arduino as a slave I/O to an EPICS Control System.

[18] Мороз, В., Ройзман, В., Яновицький, О., Мішан, В. (2018). Визначення ефективності використання безрезонансного кріпильного присьрою. Склад організаційно-програмного комітету сімнадцятої МНТК ВОТТП, 18, 262.

[19] Chaudhury, S. B., Sengupta, M., & Mukherjee, K. (2014). Vibration monitoring of rotating machines using MEMS accelerometer. International journal of scientific engineering and research, 2(9), 5–11.

[20] Prots’ko, I. H. O. R., & Teslyuk, V. A. S. Y. L. (2014). Algo­rithm of efficient computation DSTI-IV using cyclic con­vo­lutions. Wseas transactions on signal processing, 10(1), 277–287.

[21] Бібліотека wiringPi для Raspberry Pi. http://wiringpi.com/reference/i2 c-library/

[22] Бібілотека ДПФ FFTW. http://www.fftw.org/

[23] eLa Torre, R. D., Pasobillo, G. A. E., Rebueno, M. F., Suñ-ga, D. P., Esguerra, B. J. J., & Concepcion, R. (2020). Vibration-based Structural Health Monitoring System for Bridges using ADXL345 Accelerometer with MATLAB Standalone Application. In 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), (pp. 1–5). IEEE. https://doi.org/10.1109/HNICEM51456.2020.9400068

[24] Hasibuzzaman, M., Shufian, A., Shefa, R. K., Raihan, R.,
Ghosh, J., & Sarker, A. (2020). Vibration measurement & analysis using arduino based accelerometer. 2020 IEEE Region 10 Symposium (TENSYMP). (pp. 508–512). IEEE. https://doi.org/10.1109/TENSYMP50017.2020.9230668

[25] Adli, B., & Rusmin, P. H. (2020). Vibration Measuring Tools For Rotary Pumping Machine With Accelerometer MEMS Sensor. 2020 FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE), (pp. 69–74). IEEE. https://doi.org/10.1109/FORTEI-ICEE50915.2020.9249860

[26] Apriyansa, A., Bintoro, J., & Sandi, E. (2021). Development of Early Real-Time Disaster Mitigation Warning System Landslide with Gyroscope ADXL345 Sensor. Journal of Physics: Conference Series , 1, 012080. IOP Publishing. https://doi.org/10.1088/1742-6596/2019/1/012080

[27] Pramudya, Y., & Islamiah, M. (2019). Vibration characteristics study on observatory using accelerometer ADXL345 sensor and Arduino. AIP Conference Proceedings, 1, 030008. AIP Publishing LLC. https://doi.org/10.1063/1.5132658