The existing means of calculating reliability indicators of software systems are analyzed. It has been established that to determine the reliability indicators of software systems, it is advisable to use the structural-logical analysis of reliability block diagrams, since it clearly and most adequately reflects the process of calculating the reliability indicators of the software system as a whole and its components in particular. Despite the external simplicity of such an analysis, conducting it is not a trivial task, because even building the condition of technical system operability is a difficult task, especially in the case of the presence of many elements with various connections between them, when solving which manually there is a very high probability human error. Also, the construction and visualization of the graph of states / transitions is a nontrivial task, since the number of possible states of the software system depending on the number of elements grows exponentially, and, in turn, increases the complexity of the system of differential equations, the solution of which makes it possible to calculate the necessary reliability indicators. It was determined that the process of reliability design of complex software systems in general, and their components in particular, requires automation of all its stages, starting from the compilation of the reliability block diagram (RBD), and ending with the visualization of the obtained results. A method of automating the process of calculating the reliability indicators of software systems and their components has been developed, which consists of eight steps and, unlike the existing ones, allows the designer to intuitively enter not only input data about the structure, but also the software architecture itself from the point of view of its reliability, and also automates all stages of calculating reliability indicators, from the stage of constructing a reliability block diagram to the stage of finding the distribution of probabilities of the software system being in all possible states. The proposed method makes it possible to use in various combinations the methods, lgorithms and software tools used for the reliability design of software systems and to choose from them the most adequate to the needs of the user in a specific situation. The use of the developed method makes it possible to reduce the influence of the human factor and the probability of making an error in the process of calculating reliability indicators of software systems at all stages of reliability design and to reduce its time by at least 21 %.
1. ISO/IEC 25010:2011 Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – System and software quality models," 2011. [Online]. Available: https://www.iso.org/obp/ui/#iso: std: iso-iec:25010: ed-1: v1: en
2. Бобало, Ю. Я. та ін. (2013). Математичні моделі та методи аналізу надійності радіоелектронних, електротехнічних та програмних систем: монографія / Ю. Я. Бобало, Б. Ю. Волочій, О. Ю. Лозинський, Б. А. Мандзій, Л. Д. Озірковський, Д. В. Федасюк, С. В. Щербовських, В. С. Яковина. – Львів: Вид-во Львівської політехніки, 2013, 300 с.
3. Bharathi, R, & Selvarani, R. (2019). "Software Reliability Assessment of Safety Critical System Using Computational Intelligence." International Journal of Software Science and Computational Intelligence, 11(3): 1‑25. https://doi.org/10.4018/ijssci.2019070101
4. Teslyuk, V, Sydor, A, Karovič, V ml., Pavliuk, O, & Kazymyra, I. (2021). Modelling Reliability Characteristics of Technical Equipment of Local Area Computer Networks. Electronics, 10(8):955. https://doi.org/10.3390/electronics10080955
5. Li, Y F., Huang, H Z., Mi, J. et al. (2022). Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability. Ann Oper Res, 311, 195‑209. https://doi.org/10.1007/s10479-019-03247-6
6. Ozirkovskyy, L., Volochiy, B., Zmysnyi, M., & Shkiliuk, O. (2020). SYNTHESIS OF SAFE BEHAVIOR ALGORITHMS OF RADIOELECTRONIC SYSTEMS FOR CRITICAL APPLICATIONS. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 10(1), 28‑31. https://doi.org/10.35784/iapgos.913
7. Sydor, A. R., Teslyuk, V. M., & Denysyuk, P. Y. (2014). Recurrent expressions for reliability indicators of compound electropower systems. Technical Electrodynamics, 4, 47‑49.
8. Teslyuk, V., Pavliuk, O. & Kazymyra, I. (2021). Model for Determining the Optimal Structure of Hierarchical Asymmetric Branched Computer Networks, 2021 IEEE 32nd International Conference on Microelectronics (MIEL), Nis, Serbia, 2021, pp. 259–262, https://doi.org/10.1109/MIEL52794.2021.9569115
9. Karnouskos, S., Sinha, R., Leitão, P., Ribeiro, L., & Strasser, T. I. (2018). The Applicability of ISO/IEC 25023 Measures to the Integration of Agents and Automation Systems," IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 2927–2934. https://doi.org/10.1109/IECON.2018.8592777
10. Catelani, M., Ciani, L., & Venzi, M. (2015). Reliability assessment for complex systems: A new approach based on RBD models, 2015 IEEE International Symposium on Systems Engineering (ISSE), Rome, Italy, 286–290. https://doi.org/10.1109/SysEng.2015.7302771
11. Sahinoglu, M., & Ramamoorthy, C. V. (2005). RBD tools using compression, decompression, hybrid techniques to code, decode, and compute reliability in simple and complex embedded systems, Oct. 2005 IEEE Transactions on Instrumentation and Measurement, 54(5), 1789–1799. https://doi.org/10.1109/TIM.2005.855103
12. Bennetts, R. G. (1982). Analysis of Reliability Block Diagrams by Boolean Techniques, June 1982 IEEE Transactions on Reliability, R-31(2), 159–166. https://doi.org/10.1109/TR.1982.5221283
13. Babu, Naveen, Himagiri, Krishna, V Vamshi , Kumar, A Anil , & Ravi, M. (2019). Software Defect Prediction Analysis by Using Machine Learning Algorithms. International Journal of Recent Technology and Engineering 8(2S11). 3544‑3546. https://doi.org/10.35940/ijrte.b1438.0982s1119
14. Libo, Li, Lessmann, Stefan, & Baesens, Bart (2019). Evaluating Software Defect Prediction Performance: An Updated Benchmarking Study. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3312070
15. Revoori Veeharika Reddy, Nagella Kedharnath, Mandi Akif Hussain, & S. Vidya. (2021). Software Defect Estimation using Machine Learning Algorithms. International Journal of Recent Technology and Engineering (IJRTE), 10(1), 204–208. https://doi.org/10.35940/ijrte.A5898.0510121
16. Balogun, Abdullateef O., Basri, Shuib, Mahamad, Saipunidzam, Abdulkadir, Said J., & Bajeh, Amos O. (2020). Impact of Feature Selection Methods on the Predictive Performance of Software Defect Prediction Models: An Extensive Empirical Study". Symmetry, 12(7), 1147–1156. https://doi.org/10.3390/sym12071147
17. LEI, T., XUE, J., WANG, Y., NIU, Z., SHI, Z., & ZHANG, Y. (2022). WCM-WTrA: A Cross-Project Defect Prediction Method Based on Feature Selection and Distance-Weight Transfer Learning. Chinese Journal of Electronics, 31, 354–366. https://doi.org/10.1049/cje.2021.00.119
18. Jiarpakdee, J., Tantithamthavorn, C., & Treude, C. (2020). The impact of automated feature selection techniques on the interpretation of defect models. Empir Software Eng., 25, 3590–3638. https://doi.org/10.1007/s10664-020-09848-1
19. Rahul, Hans, & Kaur, Harjot (2020). Opposition-Based Enhanced Grey Wolf Optimization Algorithm for Feature Selection in Breast Density Classification. International Journal of Machine Learning and Computing, 10(3), 458‑64. https://doi.org/10.18178/ijmlc.2020.10.3.957
20. P. Sridhar & Mehta S. (2021). Stacking Based Ensemble Learning for Improved Software Defect Prediction. Proceeding of Fifth International Conference on Microelectronics, Computing and Communication Systems, 167‑178. https://doi.org/10.1007/978-981-16-0275-7_14
21. WEI, H., SHAN, C., HU, C., ZHANG, Y. and YU, X. (2019). Software Defect Prediction via Deep Belief Network. Chinese J. Electron., 28, 925–932. https://doi.org/10.1049/cje.2019.06.012
22. T. Asano et al. (2021). Using Bandit Algorithms for Project Selection in Cross-Project Defect Prediction, 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME), Luxembourg, 649–653. https://doi.org/10.1109/ICSME52107.2021.00074
23. Tang, S., Huang, S., Zheng, C. Liu, E. Zong, C., & Ding, Y. (2022). A novel cross-project software defect prediction algorithm based on transfer learning, Tsinghua Science and Technology, 27(1), 41–57. https://doi.org/10.26599/tst.2020.9010040
24. Kumar, Lov, Kumar, Mukesh, & Murthy, Lalita Bhanu (2021). An Empirical Study on Application of Word Embedding Techniques for Prediction of Software Defect Severity Level. Proceedings of 16th Conference on Computer Science and Intelligence Systems (FedCSIS), 477–484. https://doi.org/10.15439/2021F100
25. Qiao, Lei, Xuesong, Li, Qasim, Umer, & Ping, Guo (2020). Deep Learning Based Software Defect Prediction. Neurocomputing, 385, 100–110. https://doi.org/10.1016/j.neucom.2019.11.067
26. Saleh, Albahli (2019). A Deep Ensemble Learning Method for Effort-Aware Just-In-Time Defect Prediction. Future Internet, 11(12),246. https://doi.org/10.3390/fi11120246
27. Shi, Ke, Lu, Yang, Chang, Jingfei, & Wei, Zhen (2020). PathPair2Vec: An AST Path Pair-Based Code Representation Method for Defect Prediction. Journal of Computer Languages, 59, 100979. https://doi.org/10.1016/j.cola.2020.100979
28. Albahli, Saleh. (2019). A Deep Ensemble Learning Method for Effort-Aware Just-In-Time Defect Prediction. Future Internet, 11(12), 246. https://doi.org/10.3390/fi11120246
29. Yakovyna, V. S., Seniv, M. M., Symets, I. I., & Sambir, N. B. (2020). Algorithms and software suite for reliability assessment of complex technical systems. Radio Electronics, Computer Science, Control, (4), 163‑177. https://doi.org/10.15588/1607-3274-2020-4-16
30. Seniv, M., Mykuliak, A, & Senechko, A. (2016). Recursive algorithm of traversing reliability block diagram for creation reliability and refuse logical expressions, 2016 XII International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, Ukraine, 199-201. https://doi.org/10.1109/MEMSTECH.2016.7507542
31. Bobalo, Y., Seniv, M., Yakovyna, V., & Symets, I. (2018). Method of Reliability Block Diagram Visualization and Automated Construction of Technical System Operability Condition. In: Shakhovska, N., Medykovskyy, M. (eds) Advances in Intelligent Systems and Computing III. CSIT. Advances in Intelligent Systems and Computing, 871. Springer, Cham. 599–610. https://doi.org/10.1007/978-3-030-01069-0_43
32. Bobalo, Y., Yakovyna, V., Seniv, M. & Symets, I. (2018). Technique of Automated Construction of States and Transitions Graph for the Analysis of Technical Systems Reliability, 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, 314–317. https://doi.org/10.1109/STC-CSIT.2018.8526698
33. Мандзій, Б., Сенів, М., & Гайда, П. (2013). Програмна реалізація моделі надійності технічної резервованої системи з перемикачем. Комп'ютерні технології друкарства: зб. наук. пр. Укр. акад. друкарства, 30, 88‑96.
34. Bobalo, Y., Yakovyna, V., Seniv, M., & Symets, I. (2019). Techniques of Automated Processing of Kolmogorov – Chapman Differential Equation System for Reliability Analysis of Technical Systems, 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), Polyana, Ukraine, 1–5, https://doi.org/10.1109/CADSM.2019.8779271
35. Yakovyna, V. S., Seniv, M. M., Lytvyn, V. V., & Symets, І. І. (2019). Програмний модуль розв'язування систем диференціальних рівнянь Колмогорова-Чепмена для автоматизації надійнісного проектування. Науковий вісник НЛТУ України, 29(5), 141–146. https://doi.org/10.15421/40290528