APPLICATION OF DIGITAL TWIN TECHNOLOGY IN MEDICINE

2025;
: 25-34
https://doi.org/10.23939/ujit2025.02.025
Received: June 11, 2025
Revised: August 31, 2025
Accepted: October 30, 2025

Цитування за ДСТУ: Петренко А. І., Цимбалюк Р. С., Кандель К. В., Казаков В. В. Використання цифрових двійників у медицині. Український журнал інформаційних технологій. 2025, т. 7, № 2. С. 25–34.
Citation APA: Petrenko, A. I., Tsymbaliuk, R. S., Kandel, K. V., & Kazakov, V. V. (2025). Application of digital twin technology in medicine. Ukrainian Journal of Information Technology, 7(2), 25–34. https://doi.org/10.23939/ujit2025.02.25

1
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
2
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
3
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
4
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

In modern medicine, novel technologies play a key role in improving the diagnosis, treatment, and management of patient health. One of the most promising innovations is Digital Twin technology, which enables the creation of virtual models of real-world objects, including human organs. This technology opens new possibilities for personalised medicine, disease prediction, and the optimisation of medical processes. Digital Twins are already actively used in various industries, such as manufacturing, aviation, and urban planning, but their potential in medicine is only beginning to unfold. They allow for creating detailed models of an individual patient’s body, contributing to more accurate diagnostics, simulation of treatment responses, and enhanced efficiency of medical interventions.
This article explores the key aspects of Digital Twin medical applications, their advantages, challenges, and development prospects. Special attention is given to the technical foundations of this technology, its use in personalised medicine, health monitoring, disease prediction, and the optimisation of healthcare facilities.
For the practical part, the study shows how to create a Digital Twin of a heart based on real patient data. Additionally, the study investigates a model of the heart’s Digital Twin, demonstrates its use, and illustrates how to replicate heart functionality using the Digital Twin. The study describes how a part of a Digital Twin was created using the suggested architecture and outlines how to use and extend this functionality. More than that, the study shows how to integrate artificial intelligence into the Digital Twin architecture and how artificial intelligence algorithms help create Digital Twins. The research shows how to build the Digital Twin using machine learning and artificial intelligence technologies, and how to choose the mathematical model for the Digital Twin. To conclude, the study defines further work, problems, and difficulties in creating the Digital Twin of the heart. The study shows the perspectives on using Digital Twins, their practicality, and real-life cases where Digital Twins can save lives. Also, the study defines the next steps for the Digital Twin creation, testing, implementation, and usage in the real-life healthcare industry.

1. Kropov, V. (2024, October 21). Digital twins in healthcare: Use them to improve your healthcare practice. Software Development Company – N-iX. Retrived from: https://www.n-ix.com/digital-twins-in-healthcare/
2. Zhang, K., Zhou, H.-Y., Baptista-Hon, D. T., Gao, Y., Liu, X., Oermann, E., Xu, S., Jin, S., Zhang, J., Sun, Z., Yin, Y., Razmi, R. M., Loupy, A., Beck, S., Qu, J., & Wu, J. (2024). Concepts and applications of digital twins in healthcare and medicine. Patterns, 5(8), 101028. https://doi.org/10.1016/j.patter.2024.101028
3. Katsoulakis, E., Wang, Q., Wu, H., Shahriyari, L., Fletcher, R., Liu, J., Achenie, L., Liu, H., Jackson, P., Xiao, Y., Syeda-Mahmood, T., Tuli, R., & Deng, J. (2024). Digital twins for health: A scoping review. NPJ Digital Medicine, 7(1). https://doi.org/10.1038/s41746-024-01073-0
4. Emorphis. (2024, September 21). Digital twin in healthcare - transforming patient care. Emorphis Health. Retrived from: https://emorphis.health/blogs/digital-twins-in-healthcare/
5. Nicola Serra, Olivia Jullian Parra, Shrija Rajen Sheth, Sara Zoccheddu, Milo Puham, & Henock Yebyo. (n.d.). Roche digital twin and synthetic data in healthcare – CERN OpenLab. CERN openlab – CERN openlab. Retrived from: https://openlab.cern/ roche-digital-twin-and-synthetic-data-in-healthcare/
6. Hacker, K. (2024). The burden of chronic disease. Mayo Clinic Proceedings: Innovations, Quality & Outcomes, 8(1), 112–119. https://doi.org/10.1016/j.mayocpiqo.2023.08.005
7. Lin, Y., Chen, L., Ali, A., Nugent, C., Cleland, I., Li, R., Ding, J., & Ning, H. (2024). Human digital twin: A survey. Journal of Cloud Computing, 13(1). https://doi.org/ 10.1186/s13677-024-00691-z
8. Sharma, R., Kapila, N., & Bangarh, G. R. (n.d.). Digital twins in healthcare market. Roots Analytics. Retrived from: https://www. rootsanalysis.com/reports/digital-twins-in-healthcare-market.html
9. Chiu, C.-C., Wu, C.-M., Chien, T.-N., Kao, L.-J., Li, C., & Chu, C.-M. (2023). Integrating structured and unstructured EHR data for predicting mortality by machine learning and latent dirichlet allocation method. International Journal of Environmental Research and Public Health, 20(5), 4340. https://doi.org/10. 3390/ijerph20054340
10. Grieves, M., & Vickers, J. (2016). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary perspectives on complex systems (pp. 85–113). Springer International Publishing. https:// doi.org/10. 1007/978-3-319-38756-7_4
11. , S., & Rosen, R. (2016). Digital twin—the simulation aspect. In Mechatronic futures (pp. 59–74). Springer International Publishing. https://doi.org/10.1007/978-3-319-32156-1_5
12. Van der Aalst, W. M. P., Hinz, O., & Weinhardt, C. (2021). Resilient digital twins. Business & Information Systems Engineering. https://doi.org/10.1007/s12599-021-00721-z
13. Guo, J. (2021). Digital twins are shaping future virtual worlds. Service Oriented Computing and Applications, 15(2), 93–95. https://doi.org/10.1007/s11761-021-00321-5
14. Bruynseels, K., Santoni de Sio, F., & van den Hoven, J. (2018). Digital twins in health care: Ethical implications of an emerging engineering paradigm. Frontiers in Genetics, 9. https://doi.org/ 10.3389/fgene.2018.00031
15. Taylor, C. A., & Figueroa, C. A. (2009). Patient-Specific modeling of cardiovascular mechanics. Annual Review of Biomedical Engineering, 11(1), 109–134. https://doi.org/ 10.1146/annurev. bioeng.10.061807.160521
16. Bozkurt, S. (2019). Mathematical modeling of cardiac function to evaluate clinical cases in adults and children. Plos One, 14(10), Article e0224663. https://doi.org/10.1371/ journal. pone.0224663
17. Peter Aulbach. (2023, March 21). What is a digital patient twin? Siemens Healthineers | Corporate Home. Retrived from: https://www.siemens-healthineers.com/perspectives/digital-patient-twin
18. Meijer, C., Uh, H.-W., & el Bouhaddani, S. (2023). Digital twins in healthcare: Methodological challenges and opportunities. Journal of Personalized Medicine, 13(10), 1522. https:// doi.org/10.3390/jpm13101522
19. Marco Evangelos Biancolini & Ubaldo Cella. (n.d.). Tools and methodologies for generating digital twins in medical research / EnginSoft. Technology transfer and simulation software solutions / EnginSoft. Retrived from: https://www.enginsoft. com/expertise/tools-and-methodologies-for-generating-digital-twins-in-medical-research.html
20. Ciampi, Q., & Villari, B. (2007). Role of echocardiography in diagnosis and risk stratification in heart failure with left ventricular systolic dysfunction. Cardiovascular Ultrasound, 5(1). https://doi.org/10.1186/1476-7120-5-34
21. Braunwald, E., Brockenbrough, E. C., Frahm, C. J., & Ross, J. (1961). Left atrial and left ventricular pressures in subjects without cardiovascular disease. Circulation, 24(2), 267–269. https:// doi.org/10.1161/01.cir.24.2.267
22. Bowcock, E. M., & Mclean, A. (2022). Bedside assessment of left atrial pressure in critical care: A multifaceted gem. Critical Care, 26(1). https://doi.org/10.1186/s13054-022-04115-9
23. Papachristou, K., Katsakiori, P. F., Papadimitroulas, P., Strigari, L., & Kagadis, G. C. (2024). Digital twins’ advancements and applications in healthcare, towards precision medicine. Journal of Personalized Medicine, 14(11), 1101. https:// doi.org/10.3390/jpm14111101
24. Johnson, Z., & Saikia, M. J. (2024). Digital twins for healthcare using wearables. Bioengineering, 11(6), 606. https://doi.org/ 10.3390/bioengineering11060606
25. El-Warrak, L., & de Farias, C. M. (2024). The state of the art of digital twins in health—a quick review of the literature. Computers, 13(9), 228. https://doi.org/10.3390/computers 13090228
26. Uhlemann, T. H. J., Schock, C., Lehmann, C., Freiberger, S., & Steinhilper, R. (2017). The digital twin: Demonstrating the potential of real time data acquisition in production systems. Procedia Manufacturing, 9, 113–120. https://doi.org/10.1016/j. promfg.2017.04.043
27. Dritsas, E., & Trigka, M. (2024). Application of deep learning for heart attack prediction with explainable artificial intelligence. Computers, 13(10), 244. https://doi.org/10.3390/computers 13100244
28. Jo Cavallo. (2024, October 28). Scientists develop a ‘digital twin’ model to predict cancer treatment responses. TAP Homepage – The ASCO Post. Retrived from: https://ascopost.com/ news/october-2024/scientists-develop-a-digital-twin-model-to-predict-cancer-treatment-responses/
29. Chaudhuri, A., Pash, G., Hormuth, D. A., Lorenzo, G., Kapteyn, M., Wu, C., Lima, E. A. B. F., Yankeelov, T. E., & Willcox, K. (2023). Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas. Frontiers in Artificial Intelligence, 6. https:// doi.org/10.3389/frai.2023.1222612
30. Stephan, S., Galland, S., Labbani Narsis, O., Shoji, K., Vachenc, S., Gerart, S., & Nicolle, C. (2024). Agent-based approaches for biological modeling in oncology: A literature review. Artificial Intelligence in Medicine, 152, 102884. https://doi.org/ 10.1016/j.artmed.2024.102884
31. Stephan, S., Galland, S., Labbani Narsis, O., Shoji, K., Vachenc, S., Gerart, S., & Nicolle, C. (2024). Agent-based approaches for biological modeling in oncology: A literature review. Artificial Intelligence in Medicine, 152, 102884. https://doi.org/ 10.1016/j.artmed.2024.102884